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Appendix A. Competitive Equilibrium

Definition Appendix A.1 (Competitive Equilibrium). The competitive equilibrium is defined as a se-

quence of 9 quantities {Ct, zt, Vt, Γt, Y
G
t , Yt, RDt, Lt, At} and 7 prices {it, Qt,t+1, Pt, Wt, Kt, Ft, πW,t, }

which satisfy the following 16 equations, for a given sequence of exogenous shocks {εt, ξt, Mt, λw,t} and

exogenously specified policy variables {τ bt , τ rt , τ
p
t , τ

w
t }.

1. Euler Equation and Stochastic Discount Factor

1 = βEt

[
C−1
t+1

C−1
t

(1 + it)
Pt
Pt+1

(1− τ bt )

]
+ ξtCt

Qt,t+1 = β
C−1
t+1

C−1
t

Pt
Pt+1

2. Endogenous Growth Block

(1− τ rt )Ptδ%z
%−1
t = EtQt,t+1Vt+1(At+1)

Vt(At) = Γt + (1− zt − η)EtQt,t+1Vt+1(At)

Γt = ((1− τp)ζ − 1)

(
α

ζ

) 1
1−α

PtMtLtAt

where ζ ≡ min
(
γ1−α, 1

(1−τpt )α

)
, and γ > 1.

3. Wage Setting frictions

Kt

Ft
=

(
1− θw(πwt )

1
λw,t

1− θw

)−λw,t+(1+λw,t)ν

Kt = ω(1 + λw,t)Lt
1+ν + θwβΠ̄

−
(1+λw,t+1)(1+ν)

λw,t+1

W Π

(1+λw,t+1)(1+ν)

λw,t+1

W,t+1 Kt+1

Ft = (1 + τwt )LtC
−1
t

Wt

Pt
+ θwβΠ̄

−1
λw,t+1

W Π
1

λw,t+1

W,t+1 Ft+1

ΠW,t =
Wt

Wt−1

4. Law of motion of productivity

At = At−1 + zt−1(γ − 1)At−1

5. Market Clearing Conditions and Production Technologies

Y Gt =

(
α

ζ

) α
1−α

MtLtAt
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RDt = δz%tAt

(1− α

ζ
)Y Gt = Yt

Yt = Ct +RDt

Wt = (1− α)

(
α

ζ

) α
1−α

MtAtPt

6. Monetary Policy Rule

1 + it = max

(
1, (1 + iss)

(
πW,t
π̄W

)φπ (Lt
L̄

)φy
εit

)
; φπ > 1;φy > 0

Stationarizing the System

The competitive equilibrium defined above is non-stationary. Specifically, consumption, output, nominal

wage, are co-integrated with TFP level At. We normalize the variables as follows:

ct ≡
Ct
At

; yt ≡
Yt
At

; yGt ≡
Y Gt
At

; rdt ≡
RDt

At
; Γ̃t ≡

Γt
PtAt

;wt ≡
Wt

PtAt

Further note that because of the linearity assumption in the production of final goods, the Value function is

a linear function in productivity with which an entrepreneur enters the sector:

Ṽt =
Vt
At

= Γ̃t + (1− zt − η)EtQt,t+1Ṽt+1

where Ṽ is normalized by the productivity with which the entrepreneur enters the sector. Finally the growth

rate of productivity, determined in period t, is given by

(1 + gt+1) = 1 + zt(γ − 1)

Remaining variables are stationary.

Definition Appendix A.2 (Normalized Competitive Equilibrium). The normalized competitive equilib-

rium is defined as a sequence of 9 stationary quantities {ct, Ṽt, Γ̃t, y
G
t , yt, rdt, Lt, gt+1, zt} and 6 stationary

prices {it, wt, Kt, Ft, πW,t, Πt} which satisfy the following 15 equations, for a given sequence of exogenous

shocks {εt, ξt, Mt, λw,t} and exogenously specified policy variables {τ bt , τ rt , τ
p
t , τ

w
t }.

1. Euler Equation and Stochastic Discount Factor

1 = βEt

[
c−1
t+1(1 + gt+1)−1

c−1
t

1 + it
πt+1

(1− τ bt )

]
+ ξ′tct

where ξ′t = ξtAt
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2. Endogenous Growth Block

(1− τ rt )δ%z%−1
t = Et

c−1
t+1(1 + gt+1)−1

c−1
t

γṼt+1

Ṽt = Γ̃t + (1− zt − η)βEt
c−1
t+1(1 + gt+1)−1

c−1
t

Ṽt+1

Γ̃t = ((1− τp)ζ − 1)

(
α

ζ

) 1
1−α

MtLt

where ζ ≡ min
(
γ1−α, 1

(1−τpt )α

)
, and γ > 1.

3. Wage Setting frictions

Kt

Ft
=

(
1− θw(πwt )

1
λw,t

1− θw

)−λw,t+(1+λw,t)ν

Kt = ω(1 + λw,t)Lt
1+ν + θwβΠ̄

−
(1+λw,t+1)(1+ν)

λw,t+1

W Π

(1+λw,t+1)(1+ν)

λw,t+1

W,t+1 Kt+1

Ft = (1 + τwt )Ltc
−1
t wt + θwβΠ̄

−1
λw,t+1

W Π
1

λw,t+1

W,t+1 Ft+1

πw,t =
wt
wt−1

(1 + gt)πt

4. Productivity growth rate

(1 + gt+1) = 1 + zt(γ − 1)

5. Market Clearing Conditions and Production Technologies

yGt =

(
α

ζ

) α
1−α

MtLt

rdt = δz%t

(1− α

ζ
)yGt = yt

yt = ct + rdt

wt = (1− α)

(
α

ζ

) α
1−α

Mt

6. Monetary Policy Rule

1 + it = max

(
1, (1 + iss)

(
πW,t
π̄W

)φπ (Lt
L̄

)φy
εit

)
; φπ > 1;φy > 0

Steady State

Six variables z, g, V, L,C, Y solve the following six equations
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1. Endogenous Growth Equation

(1− τ r)%z%−1 =
β

1 + g

γṼ

δ

2. Value Function

Ṽ =
((1− τp)ζ − 1)

(
α
ζ

) 1
1−α

L

1 + g − β(1− z − η)
(1 + g)

3. Intra-temporal Labor Supply condition

ωLνc = (1− α)

(
α

ζ

) α
1−α

4. Aggregate Production Function

y =

(
1− α

ζ

)(
α

ζ

) α
1−α

L

5. Resource Constraint

c+ δz% = y

6. Growth equation (law of motion of productivity)

g = z(γ − 1)

Other steady state variables can be backed out after solving this system. We look for steady state such that

z ∈ (0, 1−η) and c ≥ 0. In what follows, we will set η = 0 to derive formulas. It is relatively straightforward

to extend the system to η > 0.

Definition Appendix A.3 (Approximate Equilibrium). An approximate competitive equilibrium in this

economy with endogenous growth is defined as a sequence of variables {π̂wt , ĉt, ŷt, ĝt+1, ît, L̂t, ŵt, π̂t, V̂t}

which satisfy the following equations, for a given sequence of exogenous shocks {ξ̂t, M̂t, ε̂
i
t, λ̂wt}.

Aggregate Demand:
− (Etĉt+1 − ĉt + ĝt+1) + ît − Etπ̂t+1 + ξ̂t = 0 (A.1)

Endogenous growth equations:

(%− 1)ηg ĝt+1 = −(Etĉt+1 − ĉt + ĝt+1) + EtV̂t+1 (A.2)

V̂t = ηy ŷt − ηz ĝt+1 − ηq(Etĉt+1 − ĉt + ĝt+1) + ηqEtV̂t+1 (A.3)

where ηy = 1− (1−z)β
1+g > 0 , ηz = β

γ−1 > 0, ηq = (1−z)β
1+g > 0
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Market clearing:

c

y
ĉt +

R
y
%ηg ĝt+1 = ŷt (A.4)

ŷt = M̂t + L̂t (A.5)

Wage setting:

π̂wt = β̃Etπ̂wt+1 + κw[ĉt + νL̂t − ŵt] + κwλ̂wt (A.6)

ŵt = M̂t (A.7)

π̂wt = ŵt − ŵt−1 + π̂t + ĝt (A.8)

where κw ≡ (1−θw)(1−βθw)

θw(1+ν(1+ 1
λw

))
> 0

Monetary policy rule:

ît = max

(
− ī

1 + ī
, φππ̂

w
t + φyL̂t + ε̂it

)
(A.9)

Appendix B. Local Determinacy with one-period patent and ex-

ogenous nominal wages

To analytically characterize the determinacy condition, we make following two assumptions, that we will

refer to as T1 and T2:

Assumption T1 Deterministic patent length of one period: Upon successful innovation, the entrepreneur gets the

monopoly right over production of intermediate good in the following period t + 1. if a randomly

selected entrepreneur fails to innovate at t+1, the planner selects a producer from a fringe of measure

zero to produce using period t + 1’s productivity in the following period. The first order condition

reported in the endogenous growth block above is modified to:

(1− τ rt )Ptδ%z
%−1
t = EtQt,t+1Γt+1(At+1)

where Γt(At) = ((1− τp)ζ − 1)
(
α
ζ

) 1
1−α

PtMtLtAt, ζ ≡ min
(
γ1−α 1

(1−τpt )α

)
, and γ > 1.

Assumption T2 Perfect nominal wage rigidity with indexation: Nominal wages are assumed to evolve :

Wt = π̄WWt−1

This equation replaces the wage Phillips curve derived above.

Both these assumptions allow us to analytically derive determinacy conditions, at and away from the

ZLB.
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Appendix B.1. Away from ZLB

Under T1 and T2, the approximate equilibrium (assuming no shocks) is given by:

L̂t = A1EtL̂t+1 + A2Etĝt+2

ĝt+1 = A3EtL̂t+1 + A4Etĝt+2

where A1 ≡
y
c+

( yc−1)%ηg
(%−1)ηg+1

y
c+φ

(
1+

( yc−1)
(%−1)ηg+1

) , A2 ≡
( yc−1)%ηg

y
c+φ

(
1+

( yc−1)
(%−1)ηg+1

) , A3 ≡ 1−φA1

(%−1)ηg+1 , A4 ≡ −φA2

(%−1)ηg+1 , ηg = 1+g
g and

lowercase letter y, c, and g denote steady state values. The system is locally determinate iff following two

conditions are met:

|A1A4 − A2A3| < 1; |A1 + A4| < 1 + A1A4 − A2A3

The second condition is met as long as φ > 0 . The first condition is met if:

ηg >
βγ

γ − 1
> 1

This condition also implies that consumption is positive and there is positive R&D investment. Assuming

% = 1, this condition can be rewritten solely in terms of parameters as in Benigno and Fornaro (2017):

1 +
Ψ(γ − 1)

δ
>
βγ$

δ
> 1; where Ψ ≡

(
1− α

ζ

)(
α

ζ

) α
1−α

; $ ≡ (ζ − 1)

(
α

ζ

) 1
1−α

For a general φ, conditional on a steady state with positive consumption and positive R&D investment,

following two conditions guarantee determinacy:

φ > 0; and ηg >
βγ

γ − 1
> 1

Appendix B.2. ZLB with two-state Markov Chain

Assuming the two-state Markov Chain where with probability µ ∈ (0, 1) the economy continues to stay at

the ZLB and with 1 − µ it escapes the ZLB, the system (with T1 and T2) in the short-run ZLB state (S)

can be expressed as:

L̂St = AS1EtL̂St+1 + AS2EtĝSt+2 + QS1 ξS

ĝSt+1 = AS3EtL̂St+1 + AS4EtĝSt+2 + QS2 ξS
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where AS1 ≡ µ

(
1 +

(1− cy )%ηg
(%−1)ηg+1

)
, AS2 ≡ −µ

(
1− c

y

)
%ηg, AS3 ≡

µ
(%−1)ηg+1 , AS4 ≡ 0, ηg = 1+g

g and lowercase

letter y, c, and g denote steady state values. The system is locally determinate iff:

µ <
((%− 1)ηg + 1)(γ − 1)

βγ

Most calibrations have γ ∈ (1.05, 1.55) and β ∈ (0.96, 1). For values of % ≥ 1.105, 2% annual steady state

growth rate and the above parameter bounds on γ and β, this condition is always satisfied. Given these

empirically plausible parameter restrictions, we obtain local determinacy at the ZLB.

Appendix C. Impulse Responses under Taylor rule eq 7

We show the detailed derivation for impulse response under the Taylor rule eq (7) and liquidity demand

shock. For monetary policy shock, productivity shock and markup shock, the proof is similar. Assume that

the liquidity demand shock follows the AR(1) process:

ξ̂t = ρiξ̂t−1 + ε̂t

Guess the solution takes the form:

ĉt = ψcε̂t; ŷt = ψy ε̂t; ĝt+1 = ψg ε̂t; π̂
w
t = ψpε̂t; V̂t = ψv ε̂t

From Euler equation, we get:

(1− ρi)ψc = −(φπ − ρi)ψp − φyψy − 1 (C.1)

From the Endogeneous Growth equation:

(1− ρi)ψc + ρiψv = [(%− 1)ηg + 1]ψg (C.2)

From the Resource constraint:
c

y
ψc +

R
y
%ηgψg = ψy (C.3)

From the Wage Phillips curve

(1− βρi)ψp = κw(ψc + νψy) (C.4)

From the Value function:

(1− ηV ρi)ψv = ηyψy − (ηz + ηq)ψg + ηq(1− ρi)ψc (C.5)
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From equations C.2, C.3, and C.5, we can find a relation between ψc and ψy. Rest of the system is pretty

standard NK system where we can solve for ψp and ψy from equations C.1 and C.4 using:

ψc =

1−ηV ρi
ρi

(%−1)ηg+1
R
y %ηg

+
ηz+ηq
R
y %ηg

− ηY[
1−ηV ρi
ρi

(%−1)ηg+1
R
y %ηg

c
y + (1− ρi)

]
+

ηz+ηq
R
y %ηg

c
y + ηq(1− ρi)

ψy = A1ψy; 0 < A1 < 1

We get:

ψp =
κ(A1 + ν)

1− βρi
ψy ≡ A2ψy

And thus:

ψy =
−1

(1− ρi)A1 + (φπ − ρi)A2 + φy
< 0

Further, from the resource constraint we find :

ψg =
ψy − c

yψc
R
y %ηg

=
1− c

yA1

R
y %ηg

ψy

Since A1 < 1, it follows that A1 <
y
c . Hence there is a positive co-movement of output and growth rate

under liquidity demand shock. Further it must be that the following holds

ψv =
[(%− 1)ηg + 1]ψg − (1− ρi)ψc

ρi
=
ηyψy − (ηz + ηq)ψg + ηq(1− ρi)ψc

1− ηvρi
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Figure C.1: Model-Based Impulse Response Functions

Source: Authors’ calculations.

Note: The figures illustrate the impulse response functions (IRFs) from the benchmark model presented in Section 2. The IRFs

are plotted in response to liquidity demand shock, and monetary policy shock, with persistence 0.9 and 0.92, respectively. Also,

ss = steady state.

Row 1 in Figure C.1 plots the impulse responses for normalized output, wage inflation, real interest rate

and productivity growth rate for a positive shock to liquidity demand ξt, that corresponds to a fall in the

annualized natural interest rate of 1 percentage point, and follows an AR(1) process with persistence of 0.90.

Monetary policy is assumed to follow a standard Taylor rule (equation 7) with φπ = 1.5 and φy = 0.5. This

shock to ξt increases the household’s desire for saving in the risk-free bond, thereby diverting resources away

from consumption. Lower anticipated aggregate demand reduces investment in R&D by entrepreneurs, also

exerting a drag on productivity growth. Similar dynamics for an AR(1) contractionary monetary policy

shock with persistence 0.92, presented in row 2 of Figure C.1. The equilibrium increase in the real interest

rate, combined with expectations of lower future aggregate demand, leads to a reduction in R&D investment

and, therefore, in TFP growth.

Appendix D. Solution to Social Planner’s Problem

Appendix D.1. Social Planner problem I

The Social Planner chooses {Ct, Lt, At+1, zt} to maximize the welfare function:

max logCt −
ω

1 + ν
L1+ν
t
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subject to the constraints:

Ct +RDt = α
α

1−α (1− α)AtLt

At+1 −At
At

= (γ − 1)zt

Rt = δz%tAt

zt ≥ 0

Combining the constraints and using the functional form for R&D Investment, we get:

Ct + δ

(
At+1 −At

At

1

γ − 1

)%
At = α

α
1−α (1− α)AtLt

Let λt be the Lagrange multiplier on the constraint. Solution to this problem is thus :

λt =
1

Ct

LνtCt = α
α

1−α (1− α)

−λtδ%
(γ − 1)%

(
At+1 −At

At

)%−1

+
λt+1βδ%

(γ − 1)%

(
At+2 −At+1

At+1

)%−1

−λt+1βδ(%− 1)

(γ − 1)%

(
At+2 −At+1

At+1

)%
+α

α
1−α (1−α)Lt+1λt+1β = 0

Since growth rate is defined as gt+1 = At+1−At
At

, we can rewrite the above condition as:

Ct+1

Ct

δ%

(γ − 1)%
g%−1
t+1 =

βδ%

(γ − 1)%
g%−1
t+2 −

βδ(%− 1)

(γ − 1)%
g%t+2 + α

α
1−α (1− α)Lt+1β

This can be rewritten as:

Ct+1

Ct
= β

[(
gt+2

gt+1

)%−1

− 1− %
%

gt+2

(
gt+2

gt+1

)%−1

+
α

α
1−α (1− α)

δ%

Lt+1(γ − 1)%

g%−1
t+1

]

This the Euler equation for R&D investment in the Social Planner’s allocation. The right hand side gives

the return on R&D investment. Writing the LHS in normalized terms i.e. Ct = ctAt, we get

ct+1(1 + gt+1)

ct
= β

[(
gt+2

gt+1

)%−1

− 1− %
%

gt+2

(
gt+2

gt+1

)%−1

+
α

α
1−α (1− α)

δ%

Lt+1(γ − 1)%

g%−1
t+1

]
(D.1)

The (interior) equilibrium (with positive growth) is thus given by the sequence of three variables {ct, Lt, gt+1}

such that equation D.1 and following two conditions (intra-temporal labor supply and budget constraint)

are satisfied:

ωLνt ct = α
α

1−α (1− α) (D.2)

ct + δ

(
gt+1

γ − 1

)%
= α

α
1−α (1− α)Lt (D.3)
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Appendix D.2. Policy Relevant Welfare Function

The representative agent’s lifetime welfare function at time t can be rewritten as

Vt =

∞∑
s=t

βs−t [logCs − v(Ls)] =

∞∑
s=t

βs−t
[
log cs − v(Ls) +

β

1− β
log(1 + gs+1)

]
+

1

1− β
logAt

We redefine the terms in the square brackets as the policy relevant per period welfare function:

Wt = log ct − v(Lt) +
β

1− β
log(1 + gt+1)

Thus the policy relevant lifetime welfare function is given by

Wt =

∞∑
s=t

βs−t
[
log cs − v(Ls) +

β

1− β
log(1 + gs+1)

]

Appendix D.3. Social Planner problem II

The Social Planner chooses {ct, Lt, gt+1, zt} to maximize lifetime-policy relevant welfare function:

max

∞∑
s=t

βs−t
[
log cs −

ω

1 + ν
L1+ν
s +

β

1− β
log(1 + gs+1)

]

subject to

ct + rdt = α
α

1−α (1− α)Lt = yt

gt+1 = zt(γ − 1)

rdt = δz%t

zt ≥ 0

Solution (for z > 0) is given by:
rd′(zt)

ct
= (γ − 1)

β

1− β
1

1 + gt+1

ωLνt ct = α
α

1−α (1− α)

ct + rdt = α
α

1−α (1− α)Lt = yt

rdt = δz%t

gt+1 = zt(γ − 1)

Substituting out for research intensity zt in terms of growth rate and using the functional form for R&D

Investment, Solution is given by Intra-temporal labor supply condition eq D.2, Budget constraint eq D.3 and
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the following R&D investment condition:

%δ

(
gt+1

γ − 1

)%−1

= (γ − 1)
β

1− β
ct

1 + gt+1
(D.4)

Appendix D.4. Equivalence of two solutions

It is clear that Euler condition derived in eq D.1 is not as amenable to analytical manipulations as is the

corresponding R&D investment condition eq D.4 derived under the modified Social Planner problem II.

Remains to be shown that the resulting equilibrium is identical in both scenarios.

In Steady State eq D.1 simplfies to:

(1 + g) = β

[
1− 1− %

%
g +

α
α

1−α (1− α)

δ%

L(γ − 1)%

g%−1

]

It is straightforward to show that eq D.4 combined with eq D.3 also yields the above condition. Thus,

the solutions are identical at the steady state.† As regards the dynamics away from the steady state, eq D.1

can be rewritten as:

ct+1(1 + gt+1)

ct
= β

[(
gt+2

gt+1

)%−1

(1 + gt+2) +
ct+1

δ%

(γ − 1)%

g%−1
t+1

]
(D.5)

From eq D.4, we can write out the RHS of the above equation D.5 as

ct+1(1 + gt+1)

ct
=

(
gt+2

gt+1

)%−1

(1 + gt+2) (D.6)

Thus, it remains to show that the LHS of two equations D.5 and D.6 are equal. We prove by reduction.

Substitute LHS of equation D.6 into RHS of eq D.5 to get:

(
gt+2

gt+1

)%−1

(1 + gt+2) = β

[(
gt+2

gt+1

)%−1

(1 + gt+2) +
ct+1

δ%

(γ − 1)%

g%−1
t+1

]

Simple algebraic manipulation yields:

(1− β)

(
gt+2

gt+1

)%−1

(1 + gt+2) = β
ct+1

δ%

(γ − 1)%

g%−1
t+1

†

βc

%δ

(γ − 1)%

g%−1
= (1− β)(1 + g); c = α

α
1−α (1− α)L− δ

(
g

%− 1

)%
. These yield the above Euler equation.
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which can be simplified to yield:

1− β
β

%δ

γ − 1

(
gt+2

γ − 1

)%−1

(1 + gt+2) = ct+1

which is true since it is eq D.4 forwarded by one period. Since we do not use the labor-supply intra-temporal

condition to show the equivalence between the two solutions under flexible wages, the two approaches are

also equivalent under nominal wage rigidities which introduces a wedge in the labor-supply intra-temporal

condition.

Appendix D.5. Efficient Steady State

Efficient Steady State is given by following system of equations in three variables c, L, g:

L =

[
α

α
1−α (1− α)

ωc

] 1
ν

; c =
%δ

γ − 1

1− β
β

(1 + g)

(
g

γ − 1

)%−1

c+ δ

(
g

γ − 1

)%
= α

α
1−α (1− α)L

When % = 1, the solution is given by a fixed point of the following equation:

χ1(1 + g) +
δ

γ − 1
g =

[
α

α
1−α (1− α)

ωχ1(1 + g)

] 1
ν

; where χ1 ≡
δ

γ − 1

1− β
β

The LHS is a linear monotonically increasing function of g. RHS is a monotonically decreasing function of

g. By single crossing, one can show that there is a unique locally determinate solution for a given condition

on χ1. For higher values of %, numerically we verify local determinacy.

Appendix D.6. Unconventional Policy away from the ZLB: Implementable Al-

location

Now we show that the first-best equilibrium allocation can be implemented as the competitive equilibrium

using the time-varying fiscal and monetary instruments - nominal interest rate it, Tax on interest income

τ bt , Tax on intermediate goods τpt , Research subsidy for entrepreneurs τ rt and Labor tax for household τwt as

follows:

τpt = 1− 1

α

τwt = λw,t

1− τ rt =
1− β
ct+1

(1 + gt+1)
γ

γ − 1
Ṽt+1
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τ bt = 0

and the nominal interest rate is set such that Wt = π̄tWW−1 - consistent with perfect nominal wage inflation

targeting.

Proof. Follows from comparing the system of equations derived under first-best allocation in Appendix C.3

and the (normalized) competitive equilibrium defined in Definition A.2.

Appendix D.7. Unconventional Fiscal Policy at the ZLB: Implementable Allo-

cation

At the zero lower bound, the nominal interest rate is stuck at 0. However, the first best can still be

implemented using the tax subsidy on interest income to offset the ZLB shock. The fiscal instruments

are used are as follows: Tax on interest income τ bt , Tax on intermediate goods τpt , Research subsidy for

entrepreneurs τ rt and Labor tax for household τwt as follows:

τ bt =
ξ′t

βc−1
t+1(1 + gt+1)−1

πt+1

1 + it
(D.7)

τpt = 1− 1

α
(D.8)

τwt = λw,t (D.9)

1− τ rt =
1− β
ct+1

(1 + gt+1)
γ

γ − 1
Ṽt+1 (D.10)

Proof. Follows from comparing the system of equations derived under first-best allocation in Appendix

Appendix D.3 and the (normalized) competitive equilibrium defined in Definition A.2.

As in Correia et al. (2013), it can be shown that the resulting equilibrium is revenue-neutral and time-

consistent.

We can re-define the first-best allocation as the equilibrium allocation defined in Definition 1 such that

the government provides the time-varying fiscal and monetary instruments listed in eq D.7-D.10.

Appendix D.8. Approximate First-Best Equilibrium

We log-linearize the non-linear equilibrium conditions around the non-stochastic efficient steady state. Ap-

proximate first-best equilibrium is given by a sequence of 4 quantities: {L̂∗t , ĉ∗t , ŷ∗t , ĝ∗t+1} that solve the

following equations for a given exogenous process of shocks M̂t:

νL̂∗t + ĉ∗t = M̂t (D.11)
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(%− 1)ηg ĝ
∗
t+1 = ĉ∗t − ĝ∗t+1 (D.12)

c

y
ĉ∗t +

rd

y
%ηg ĝ

∗
t+1 = ŷ∗t (D.13)

M̂t + L̂∗t = ŷ∗t (D.14)

Efficient solution

The above system can be solved to derive the following closed form solution:

ĝ∗t+1 = ψ∗gM̂t; ĉ∗t = ψ∗cM̂t; ŷ∗t = ψ∗yM̂t; L̂∗t = ψ∗l M̂t

where ψ∗g = 1+ν
(ν cy+1)((%−1)ηg+1)+% rdy %ηg

> 0,

0 < ψ∗c = ((%− 1)ηg + 1)ψ∗g < 1,

ψ∗y = c
yψ
∗
c + rd

y %ηgψ
∗
g > 0, and

ψ∗l =
1−ψ∗c
ν > 0

Appendix D.9. Time-t vs. time-0 flexibility

There are two concepts of price flexibility in the presence of a pre-determined state variable. One is the Neiss

and Nelson (2003) definition of flexible wages, under which wages have been set flexibly since time 0 and

remain flexible indefinitely. Wages set under this concept are called time-0 flexible wages. Second concept of

flexibility is the Woodford (2003, Ch. 5)’s definition where wages are set flexibly in the current and future

periods taking as given the current period value of the state variable. Wages set under this concept are called

time-t flexible wages. Based on two concepts of flexible wages, there are time-0 first best, time-0 natural rate,

time-t first best and time-t natural rate allocations. We formally define each of these shortly. In the main

text, to avoid clutter of notation, we used first best allocation for time-0 first best allocation and natural rate

for time-0 natural rate allocation. For the ease of exposition, we referred to time-0 flexible wages as flexible

wages.

Whether potential output is endogenous or not depends on the precise definition. We defined potential

output as the level of output that coincides with the time-t first-best allocation. We believe this is more

appealing definition than the one based on time-0 concept because it coincides with the maximum non-

inflationary output an economy can produce at a given time with efficient use of resources.

Since the normalized equilibrium can be written without any reference to the level of productivity At,

the normalized allocations based on the two flexibility concepts coincide.

Definition Appendix D.1 (normalized natural rate allocation). The normalized natural rate allocation is

given by a sequence of variables {ĉft , ŷ
f
t , ĝ

f
t+1, V̂

f
t } such that these satisfy the following equations for a given

sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t}:
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ĉft + νŷft − (1 + ν)M̂t) + λ̂wt = 0 (D.15)

c

y
ĉft +

rd

y
%ηg ĝ

f
t+1 = ŷft (D.16)

(%− 1)ηg ĝ
f
t+1 = −(Etĉft+1 − ĉ

f
t + ĝft+1) + Etŷft+1 (D.17)

V̂ ft = ηy ŷ
f
t − ηz ĝ

f
t+1 − ηq(Etĉ

f
t+1 − ĉ

f
t + ĝft+1) + ηV EtV̂ ft+1 (D.18)

In other words, if xft = [ĉft , ŷ
f
t , ĝ

f
t+1, L̂

f
t , V̂

f
t ] is vector of endogenous variables and εt = [ξ̂t, ε̂

i
t, M̂t, λ̂w,t] is a

vector of shocks, then there is a unique flexible allocation independent of history of nominal distortions and

is given by the solution of following rational expectations system:

Fxft+1 +Gxft +Hεt = 0 (D.19)

where F , G, and H are matrices of coefficients corresponding to definition A.2. Using a standard rational

expectations solution method, the system can be solved as:

xft = Mεt (D.20)

Therefore the major difference that these two flexibility concepts generate in the context of our framework

is that under time-0 flexibility setting, productivity Af,−∞ is a hypothetical construct that would have

occurred had prices and wages been flexible since the beginning of time. Under time-t flexibility, the level

of productivity Af,t is the pre-determined level of productivity corresponding to the data Adata. Following

are the law of motions of the two productivity concepts:

Af,−∞t+1 = Af,−∞t (1 + gft+1)

Af,tt+1 = Adatat (1 + gft+1)

where Af,−∞t is the level of productivity under flexible wages at time t when wages have been flexible since

the infinite past. Adatat is the level of productivity given by the Definition A.1 of the competitive equilibrium

and gft+1 is the flexible-wage productivity growth rate solved in the system D.20.

We further emphasize that the distinction between two natural rate concepts defined in our framework

is different from that imposed in exogenous growth environments with capital investment (Edge 2003). In

our benchmark endogenous growth model, the natural rate of interest is always same under the two concepts

of flexibility. Only the levels of productivity and output differ. Importantly, this difference in levels may be

permanent depending on the central bank’s policy rule. In contrast, the introduction of capital investment

introduces a temporary difference in the levels of capital, output as well as the interest rates depending on

the nature of flexibility assumed. In those models, there is no medium or long-run difference between various
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concepts as capital always returns to initial steady state value. Hence, in contrast to the setups in Neiss and

Nelson (2003) and Woodford (2003), the potential output is an endogenous object even in the long-run in

our framework.

Appendix D.9.1. time- 0 allocations

We can therefore define the time-0 allocations as follows:

Definition Appendix D.2 (time-0 first-best allocation). The time-0 first best allocation is defined as

sequence of variables {Y ∗,−∞t , A∗,−∞t+1 , C∗,−∞t , ĉ∗t , ŷ
∗
t , ĝ

∗
t+1, L̂

∗
t } which satisfy the equations D.11- D.14 and

the following equations, given a sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t} and initial level of productivity A0:

A∗,−∞t+1 = A∗,−∞t (ĝ∗t+1 + log(1 + gss))

Y ∗,−∞t = A∗,−∞t (ŷ∗t + log yss)

C∗,−∞t = A∗,−∞t (ĉ∗t + log css)

Definition Appendix D.3 (time-0 natural rate allocation). The time-0 natural rate allocation is defined

as sequence of variables {Y f,−∞t , Af,−∞t+1 , Cf,−∞t , ĉft , ŷ
f
t , ĝ

f
t+1, V̂

f
t } which satisfy the equations D.15- D.18 and

the following equations, given a sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t} and initial level of productivity A0:

Af,−∞t+1 = Af,−∞t (ĝft+1 + log(1 + gss))

Y f,−∞t = Af,−∞t (ŷft + log yss)

Cf,−∞t = Af,−∞t (ĉft + log css)

Appendix D.9.2. time- t allocations

Similarly, we define the time-t allocations as follows:

Definition Appendix D.4 (time-t first-best allocation). The time-t first best allocation is defined as

sequence of variables {Y ∗,tt , A∗,tt+1, C
∗,t
t , ĉ∗t , ŷ

∗
t , ĝ

∗
t+1, L̂

∗
t } which satisfy the equations D.11- D.14 and the

following equations, given a sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t} and the actual level of productivity at date

t, Adatat :

A∗,tt+1 = Adatat (ĝ∗t+1 + log(1 + gss))

Y ∗,tt = Adatat (ŷ∗t + log yss)

C∗,tt = Adatat (ĉ∗t + log css)
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Definition Appendix D.5 (time-t natural rate allocation). The time-t natural rate allocation is defined

as sequence of variables {Y f,tt , Af,tt+1, C
f,t
t , ĉft , ŷ

f
t , ĝ

f
t+1, V̂

f
t } which satisfy the equations D.15- D.18 and the

following equations, given a sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t} and the actual level of productivity at date

t, Adatat :

Af,−∞t+1 = Adatat (ĝft+1 + log(1 + gss))

Y f,−∞t = Adatat (ŷft + log yss)

Cf,−∞t = Adatat (ĉft + log css)

Appendix D.9.3. sticky-wage allocation

Definition Appendix D.6 (sticky-wage allocation). The sticky-wage allocation is defined as sequence of

variables {Yt, At+1, Ct, π̂
w
t , ĉt, ŷt, ĝt+1, ît, L̂t, ŵt, π̂t, V̂t} which satisfy the equations A.1- A.9 and the

following equations, given a sequence of shocks {ξ̂t, ε̂it, M̂t, λ̂w,t} and initial level of productivity A0:

At+1 = At(ĝt+1 + log(1 + gss))

Yt = At(ŷt + log yss)

Ct = At(ĉt + log css)

Adatat corresponds to At defined under the sticky-wage allocation.

Appendix E. Proposition Proofs

Proposition (Proposition 1: Steady State Efficiency). Assuming the policy maker has access to non-

distortionary lump-sum taxes, the steady state of the competitive equilibrium can be made efficient using

the following three fiscal tools :

a) sales subsidy τp = 1− 1
α

b) wage tax cut τw = λw , and

c) research tax /subsidy τ r = 1−
[(

γl∗(1−α)α
α

1−α

1−β(1−z∗)

)(
1−β

(γ−1)c∗

)]
, where terms with ∗ denote the efficient steady

state values.

Proof. Follows from Appendix Appendix D.6above.

Proposition (Proposition 2). The (time-0) natural rate allocation coincides with the (time-0) first-best

allocation under liquidity demand and monetary policy shocks.
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Proof. From Appendix C.9, the time-0 natural rate allocation under liquidity demand shocks and monetary

policy shocks is characterized by:

ŷft = 0, ĉft = 0, ĝft+1 = 0; ∀t ≥ 0

Because of the presence of time-varying taxes, the time-0 first-best allocation has the same solution for the

corresponding variables {ŷ∗t , ĉ∗t , ĝ∗t+1}. Hence, output at any time under (time-0) natural rate and (time-0)

first-best allocations coincide (follows from the accounting identity eq E.3). Moreover, time-t natural rate

and time-t first best allocations also coincide with each other.

Proposition (Proposition 3). Assume that the economy is at the efficient steady state at time t = 0, with

given productivity level A0. Under sticky wage allocation, quadratic approximation of representative agent’s

lifetime utility function W0 around the non-stochastic efficient steady state is given by

W0 −W∗0
Ucssyss

= −1

2

∞∑
t=0

βt

λy
(
ŷt −

β

1− β
1

ν + y
c

ĝt+1

)2

︸ ︷︷ ︸
(i)

+λg ĝ
2
t+1︸︷︷︸
(ii)

+λπ (π̂wt )2︸ ︷︷ ︸
(iii)

+O(||ξ̂t, ε̂it||3) + t.i.p. (E.1)

(i) : labor efficiency gap, (ii): productivity growth rate gap, and (iii): wage inflation gap

where λy =
(
ν + y

c

)
> 0, λg = c

y
β

1−β

[
ν

ν+ y
c

β
1−β + [(%− 1)ηg + 1]

]
> 0, λπ = 1+λw

λw
1
κw

> 0 , κw ≡
(1−θw)(1−βθw)

θw(1+ν(1+ 1
λw

)
> 0, ηg = 1+g

g > 1 and t.i.p. stands for “terms independent of policy”. W∗ denotes wel-

fare under the (time-0) first-best allocation. The approximation is scaled by the constant Ucssyss = yss
css

(evaluated at the efficient steady state).

Proof. The proof for this is detailed and builds on results shown above. First, note from Appendix D.4

that the solution of welfare function of the representative household is equivalent to the solution of the

policy-relevant welfare function derived in Appendix D.2

We then derive a quadratic approximation of the policy-relevant lifetime welfare function. Since the

problem is relatively complicated, we break the approximation into first solving for a setting with flexible

wages. We show the derivation in the case of flexible wages, i.e. no pricing distortions, in Lemma 1 below.

This simplifies the exposition. It is relatively standard to extend this proof to include nominal wage setting

frictions. The extended proof is similar to the textbook proof of Gaĺı (2015, Ch. 4) and is available on

request.
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Lemma 1. Quadratic approximation of Wt under flexible wages is given by

−1

2

[
λy

(
(ŷt − ŷ∗t )− β

1− β
1

ν + y
c

(ĝt+1 − ĝ∗t+1)

)2

+ λg(ĝt+1 − ĝ∗t+1)2

]
+ h.o.t.+ t.i.p.

Proof. We will make use of following two approximation results as in Erceg Henderson Levin 2000:

dx

x
≈ x̂+

1

2
x̂2, x̂ ≡ lnx− ln x̄

If x =
[∫ 1

0
x(j)φdj

] 1
φ

, the logarithmic approximation of x is

x̂ ≈
∫ 1

0

x̂(j)dj +
1

2
φvarj x̂(j) =

∫ 1

0

x̂(j)dj +
1

2
φ

[∫ 1

0

x̂(j)2dj −
(∫ 1

0

x̂(j)dj

)2
]

Writing the per period utility as sum of three components:

Wt = u(ct)−
∫ 1

0

v(Lt(h))dh+
β

1− β
w(gt+1)

At the Efficient Steady state,

%δ
g%−1(1 + g)

c(γ − 1)%
=

β

1− β

y = α
α

1−α (1− α)L; ω =
y

cL1+ν

c+ δ

(
g

γ − 1

)%
= y

uy =
1

c
;ug =

−1

c

%δg%−1

(γ − 1)%
;uyg =

1

c2
%δg%−1

(γ − 1)%

uyy = − 1

c2
;ugg = −

[(
%δg%−1

c(γ − 1)%

)2

+
%(%− 1)δg%−2

c(γ − 1)%

]

vy = ωLν =
1

c
; vyy =

ωνL1+ν

y2
=

ν

yc

wg =
β

1− β
1

1 + g
;wgg =

−β
1− β

1

(1 + g)2

Second Order approximation of individual components of the welfare function is given by:

ut = ū+ yuy
dyt
y

+ (1 + g)ug
dgt+1

1 + g
+ y(1 + g)

dyt
y

dgt+1

1 + g
+
y2

2
uyy

(
dyt
y

)2

+
(1 + g)2

2
ugg

(
dgt+1

1 + g

)2

+ h.o.t.

vt = v̄ + yvy
dyt
y

+
y2

2
vyy

(
dyt
y

)2

+ h.o.t.
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wt = w̄ + (1 + g)wg
dgt+1

1 + g
+

(1 + g)2

2
wgg

(
dgt+1

1 + g

)2

+ h.o.t.

Using the Taylor approximation result that

dx

x
= x̂+

1

2
x̂2

where x̂ = log(x)− log(xss), we can write down the quadtraic approximation as :

ut = yuy

[
ŷt +

1

2
ŷ2
t

]
+ (1 + g)ug

[
ĝt+1 +

1

2
ĝ2
t+1

]
+ y(1 + g)ŷtĝt+1 +

y2

2
uyy ŷ

2
t +

(1 + g)2

2
ugg ĝ

2
t+1 + h.o.t.+ t.i.p.

vt = yvy

[
ŷt +

1

2
ŷ2
t

]
+
y2

2
vyy ŷ

2
t + h.o.t.+ t.i.p.

wt = (1 + g)wg

[
ĝt+1 +

1

2
ĝ2
t+1

]
+

(1 + g)2

2
wgg ĝ

2
t+1 + h.o.t.+ t.i.p.

where ŷt = log yt − log y, and ĝt+1 = log(1 + gt+1)− log(1 + g).

Combining the three components, per period welfare function can be expressed as:

Wt = [yuy − yvy] ŷt + [(1 + g)ug + (1 + g)wg] ĝt+1 + y(1 + g)uyg ŷtĝt+1

+
1

2

[
yuy + y2uyy − yvy − y2vyy

]
ŷ2
t

+
1

2

[
(1 + g)ug + (1 + g)2ugg + (1 + g)wg + (1 + g)2wgg

]
ĝ2
t+1

+ h.o.t.+ t.i.p.

note that following relations hold true at the efficient steady state

yuy = yvy; (1 + g)ug + (1 + g)wg = 0; y(1 + g)uyg =
y

c

β

1− β

yuy + y2uyy − yvy − y2vyy = −y
c

[y
c

+ ν
]

(1 + g)ug + (1 + g)2ugg + (1 + g)wg + (1 + g)2wgg = −

[
β

1− β
+

(
β

1− β

)2

+
%(%− 1)δ(1 + g)2g%−2

c(γ − 1)%

]
Using these into the quadratic approximation of Wt and completing the squares we get

Wt =− 1

2

y

c

(
ν +

y

c

)[
(ŷt − ŷ∗t )− β

1− β
1

ν + y
c

(ĝt+1 − ĝ∗t+1)

]2

− 1

2

β

1− β

[
ν

ν + y
c

β

1− β
+ [(%− 1)ηg + 1]

]
(ĝt+1 − ĝ∗t+1)2 + h.o.t.+ t.i.p.

the term in the first bracket is the labor wedge.
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Lemma 2. Labor Wedge is given by

ν(L̂t − L̂∗t ) + (ĉt − ĉ∗t )− (ŵt − ŵ∗t ) = (ŷt − ŷ∗t )− β

1− β
1

ν + y
c

(ĝt+1 − ĝ∗t+1)

Proof. Use equations A.4, A.5 and A.7 from definition A.3 to substitute for L̂t, ĉt and ŵt. Finally note that

under efficient allocation, the labor wedge is zero, that is, νL̂∗t + ĉ∗t − ŵ∗t = 0. �

In the following Corollary, we show the conditions under which the welfare loss resulting from these

productivity growth rate deviations is larger than that arising due to changes in the labor efficiency gap. We

provide a sufficient condition for the growth rate gap to be of higher importance for stabilization than the

labor efficiency wedge. We argue below that this condition is likely to be satisfied even for extreme values

of parameters considered in the literature. This highlights the importance of stabilizing the productivity

growth rate around the first-best allocation.

Corollary (Corollary: Importance of Growth Stabilization). The relative weight on growth rate gap is higher

than the relative weight on labor efficiency wedge if

β

1− β
>
y

c

(
ν +

y

c

)
(E.2)

Proof. If β
1−β >

y
c

(
ν + y

c

)
, then it follows directly that :

β

1− β

[
ν

ν + y
c

β

1− β
+ (%− 1)ηg + 1

]
>
y

c

(
ν +

y

c

)
since all the terms in the square bracket on the LHS are positive and add to more than 1.

Common calibration values of discount rate β at quarterly frequency lie in the range of [0.98, 1). This

implies a lower bound on the left hand side of the condition (E.2) at 49. We bound the right hand side as

follows: consumption to output ratio in the US has fluctuated between 0.54 and 0.66 from 1960 -2014 (BEA).

In fact, in the benchmark calibration of the model’s efficient steady state, the consumption-output ratio is

0.88. It is higher than the data equivalent since we do not have physical capital investment or government

spending.† Estimates of Frisch elasticity of labor 1/η in the micro literature lie between 0.1 and 0.5 (Chetty

et al. 2016) while the macro literature uses the estimates in the range of (2,4). Using value of 0.1 for η−1 and

very conservative estimate of 0.54 for c/y ratio, this implies an upper bound on the right hand side at 22.

Hence for a wide range of parameter estimates used in the macroeconomics literature, the welfare loss from

†This model implied ratio is what is likely to be of consequence in extended models featuring capital and
government spending. We thank an anonymous referee for bringing this point to our attention.
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a given growth rate deviation is higher than the welfare loss from a similar change in labor efficiency gap.

Intuitively, a given deviation in growth rate from steady state has long run, potentially permanent effects.

On the other hand, fluctuations in the labor efficiency pertain to welfare losses only in the period these are

encountered.

Proposition (Proposition 4: Optimal Policy away from ZLB). Given a process for liquidity demand and

monetary policy shocks, optimal policy under sticky wage allocation tracks the natural rate of interest when

the Zero Lower Bound constraint is slack.

Proof. When the nominal interest rate is set equal to the natural interest rate (and is non-negative), the

unique solution to the competitive equilibrium is

ŷt = 0; ĉt = 0; π̂wt = 0; ĝt+1 = 0

which corresponds to the first-best allocation as shown in proof of Proposition 4.

Corollary (Corollary 1). When the ZLB is slack, the time series of output under optimal policy is a trend

stationary process (integrated of order zero), that is,

log Yt = a+ b ∗ t

where a = log Y0 is the initial level of output, and b = log(1 + gss) is the steady state productivity growth

rate.

Proof. Under optimal policy, the productivity growth rate does not deviate from the steady state growth

rate. Hence the series of output can be expressed as:

log YT = log Y0 +

T−1∑
k=0

(1 + gss) = log Y0 + (T − 1)(1 + gss); ∀t ≥ 1

Proposition (Proposition 5: Output hysteresis). Given the monetary policy rule (eq 7) and in the absence

of a zero lower bound constraint on the nominal interest rate, transitory (modeled as AR(1) process) liquidity

demand shocks or monetary policy shocks induce a permanent deviation in the time series of output from the

counterfactual (flexible wage-) level of output if and only if monetary policy is not a strict targeting rule i.e.

YT 6= Y eT ⇐⇒ {φπ, φy > 0 : φπ 6→ ∞ ∪ φy 6→ ∞}

where 1 < T <∞ such that yT ≡ YT
AT

= y (steady state value).
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Proof. We give the proof for liquidity demand shocks. The proof is identical for monetary policy shocks.

Note that

Y eT = (1 + gss)
TA0y; YT =

T−1∏
k=0

(1 + gk)A0y

Taking a log difference in the two series

log YT − log Y eT =

T−1∑
k=0

ĝk+1 = ψξg

T−1∑
k=0

εk (E.3)

where ψξg is the coefficient derived in Appendix Appendix C above. For a given sequence of shocks that

does not add to zero (which is the case with AR(1) process), the difference in the two series depends on ψξg .

This parameter is 0 if and only if monetary policy rule is either a strict inflation targeting (φπ → ∞) or a

strict employment targeting rule φy →∞.

Proposition (Proposition 6: Output Hysteresis at the ZLB). Given the monetary policy rule (eq 7), a

positive shock to liquidity demand such that the zero lower bound is binding for finite time T e results in a

permanent gap in output from the flexible wage counterfactual.

Proof. A positive shock to the liquidity demand that induces the ZLB under the Taylor rule results in wage

deflation and drop in output for the duration of ZLB.

Under Eggertsson and Woodford (2003) two-state Markov Chain assumption, the system at time t < T e is

in state S (short run) and can be expressed as:

(1− µ)ĉS = µπ̂wS + r̂S

(1− βµ)π̂wS = κw(ĉS + νŷS)

[(%− 1)ηg + 1]ĝS = µV̂S + (1− µ)ĉS

rd

y
%ηg ĝS = ŷS −

c

y
ĉS

V̂S =
1

1− ηV µ
[ηV ŷS + ηq(1− µ)ĉS − (ηz + ηq)ĝS ]

We can solve the last three equations to find a relationship between c and y:

ĉS = ηC ŷS ; ηC ≡
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

+
ηz+ηq
rd
y %ηg

− ηY[
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

c
y + (1− µ)

]
+

ηz+ηq
rd
y %ηg

c
y + ηq(1− µ)

< 1
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We can solve the system for t < T e:

ŷt = ψyr
n
S < 0; π̂wt = ψpr

n
S < 0; ĝt = ψgr

n
S < 0

where ψy =
(1−βµ)η−1

C

(1−βµ)(1−µ)−κw(ν+ηC)µ > 0, ψp = κw(ν+ηC)
1−µβ ψy > 0, and ψg =

1− cy ηC
rd
y %ηg

ψy > 0. We assume (by A2

in the main text) the system is locally determinate around the state S equilibrium defined above. Therefore

using the accounting identity eq E.3 derived in the proof of Proposition 1, we can derive:

log Yt − log Y et =

t−1∑
k=0

ĝk+1 = (T e − 1)ψgr
n
S < 0; ∀ t ≥ T e

This is the permanent output hysteresis in our framework following a ZLB episode.

Appendix E.1. Optimal Policy at the Zero Lower Bound

Appendix E.1.1. Optimal Commitment Solution at the ZLB

L0 = E0

∞∑
t=0

βt



1
2

[
λ1(ŷt − χ̃ĝt+1)2 + λ2ĝ

2
t+1 + (π̂wt )2

]
+φ1t

[
ĉt − ĉt+1 − π̂wt+1 − r̂nt

]
+φ2t

[
π̂wt − βπ̂wt+1 − κw(ĉt + νŷt)

]
+φ3t

[
−(Etĉt+1 − ĉt + ĝt+1) + EtV̂t+1 − (%− 1)ηg ĝt+1

]
+φ4t

[
c
y ĉt + rd

y %ηg ĝt+1 − ŷt
]

+φ5t

[
−V̂t + ηy ŷt − ηz ĝt+1 − ηq(Etĉt+1 − ĉt + ĝt+1) + ηV EtV̂t+1

]
First Order conditions:

φ1t − κwφ2t + φ3t +
c

y
φ4t + ηqφ5t − β−1 [φ1t−1 + φ3t−1 + ηqφ5t−1] = 0

λ1(ŷt − χ̃ĝt+1)− φ2tκwν − φ4t + φ5tηy = 0

−λ1χ̃(ŷt − χ̃ĝt+1) + λ2ĝt+1 − [(%− 1)ηg + 1]φ3t +
rd

y
%ηgφ4t − (ηz + ηq)φ5t = 0

π̂wt + φ2t − φ2t−1 − β−1φ1t−1 = 0

−φ5t + β−1 [φ3t−1 + ηV φ5t−1] = 0

φ1t ≥ 0, it ≥ 0, φitit = 0
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Appendix E.1.2. Optimal Discretionary Solution at the ZLB

Following is the Lagrangian for the Discretion policy

L0 = E0

∞∑
t=0

βt



1
2

[
λ1(ŷt − χ̃ĝt+1)2 + λ2ĝ

2
t+1 + (π̂wt )2

]
+φ1t

[
ĉt − ĉet+1 − π̂wet+1 − r̂nt

]
+φ2t

[
π̂wt − βπ̂wet+1 − κw(ĉt + νŷt)

]
+φ3t

[
−(ĉet+1 − ĉt + ĝt+1) + V̂ et+1 − (%− 1)ηg ĝt+1

]
+φ4t

[
c
y ĉt + rd

y %ηg ĝt+1 − ŷt
]

+φ5t

[
−V̂t + ηy ŷt − ηz ĝt+1 − ηq(ĉet+1 − ĉt + ĝt+1) + ηV V̂

e
t+1

]
λ1 = κw

(
ν + y

c

)
λw

1+λw
, χ̃ = β

1−β
1

ν+ y
c

, and λ2 = κw
c
y

β
1−β

[
ν

ν+ y
c

β
1−β + [(%− 1)ηg + 1]

]
λw

1+λw

First Order conditions:

φ1t − κwφ2t + φ3t +
c

y
φ4t + ηqφ5t = 0

λ1(ŷt − χ̃ĝt+1)− φ2tκwν − φ4t + φ5tηy = 0

−λ1χ̃(ŷt − χ̃ĝt+1) + λ2ĝt+1 − [(%− 1)ηg + 1]φ3t +
rd

y
%ηgφ4t − (ηz + ηq)φ5t = 0

π̂wt + φ2t = 0

φ5t = 0

φ1t ≥ 0, it ≥ 0, φitit = 0

Proposition (Proposition 7: Optimal Discretionary Policy at the ZLB). If Assumptions A1 and A2 hold

and for a given level of productivity at time 0, A0, the Markov equilibrium is characterized by:

logA1 = logA0 + log(1 + gss)

for 0 < t < T e

ŷt = ψyr
n
S < 0; π̂wt = ψpr

n
S < 0; ĝt = ψgr

n
S < 0

logAt+1 = logAt + ψgr
n
S

and when t ≥ T e

ŷt = π̂wt = ĝt = 0

logAt+1 = logA∗t+1 + (T e − 1)ψgr
n
S < logA∗t+1

where ψy = 1−βµ
(1−βµ)(1−µ)ηC−κw(ν+ηC)µ > 0, ψp = κw(ν+ηC)

1−µβ ψy > 0, and ψg =
1− cy ηC
rd
y %ηg

ψy > 0. A∗t+1 is the

(time-0) first-best output at time t+ 1.
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Proof. First note that the policymaker sets the policy rate to the unconstrained optimal policy rate as

soon as the zero lower bound stops binding that is for t ≥ T e. The discretionary policy (MPE) taking

into account the ZLB constraint is defined by the first order conditions derived above and the structural

relations. The optimal policy when the ZLB stops binding involves setting φit, the Lagrange multiplier on

the zero lower bound constraint, to 0. This reduces the system of equations to the familiar unconstrained

policy of setting interest rate equal to the natural interest rate such that output and inflation are back to

the (unconstrained) steady state. This constitutes a unique bounded solution and proves that there is no

inertia in the discretionary policy. Remains to show that under the zlb, it is optimal to set interest rate to

0. Suppose it is not then, as discussed above, the Lagrange multiplier on ZLB constraint must be 0 and thus

output and inflation must be at the steady state. But this leads to a violation of the AD equation, which

is not satisfied. Next we solve for the values of endogenous variables . Under the assumed Eggertsson and

Woodford two-state Markov Chain, the system at time t < T e is in state S (short run) and can be expressed

as:

(1− µ)ĉS = µπ̂wS + r̂S

(1− βµ)π̂wS = κw(ĉS + νŷS)

[(%− 1)ηg + 1]ĝS = µV̂S + (1− µ)ĉS

rd

y
%ηg ĝS = ŷS −

c

y
ĉS

V̂S =
1

1− ηV µ
[ηV ŷS + ηq(1− µ)ĉS − (ηz + ηq)ĝS ]

We can solve the last three equations to find a relationship between c and y:

ĉS = ηC ŷS ; ηC ≡
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

+
ηz+ηq
rd
Y %ηg

− ηY[
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

c
y + (1− µ)

]
+

ηz+ηq
rd
y %ηg

c
y + ηq(1− µ)

< 1

We can solve the system for t < T e:

ŷt = ψyr
n
S < 0; π̂wt = ψpr

n
S < 0; ĝt = ψgr

n
S < 0

where ψy =
(1−βµ)η−1

C

(1−βµ)(1−µ)−κw(ν+ηC)µη−1
C

> 0, ψp = κw(ν+ηC)
1−µβ ψy > 0, and ψg =

1− cy ηC
rd
y %ηg

ψy > 0. We assume

(by A2 in the main text) the system is locally determinate around the state S equilibrium defined above.

Therefore by the law of motion of productivity, we can derive that:

logAt+1 = logAt + ψgr
n
S ; ∀0 < t < T e

Second part of the proposition (when t ≥ T e) follows from Proposition 6.
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Appendix E.2. consumption-equivalent welfare loss

We derive the consumption equivalent welfare loss relative to the (time-0) first best allocation as follows:

We discussed above in Appendix D.2 that the lifetime welfare function can be re-written as :

W0 =

∞∑
s=0

βs
[
log cs − v(Ls) +

β

1− β
log(1 + gs+1)

]

Assuming a permanent gain in consumption b ≥ 0 percent, the welfare at the efficient allocation is given by:

W∗0(b) =

∞∑
s=0

βs
[
log(cs(1 + b))− v(Ls) +

β

1− β
log(1 + gs+1)

]
= W∗0(b = 0) +

1

1− β
log(1 + b)

Equating this to the welfare under the sticky wage allocation:

W0 = W∗0(b)

⇐⇒ (1− β)(W0 −W∗0(b = 0)) = log(1 + b) ≈ b

Using the quadratic approximation derived above, we can solve for b.

Under monetary policy shocks, liquidity demand shocks and wage markup shocks, the first-best allocation

corresponds with the no-fluctuations allocation. Hence the consumption-equivalent welfare loss is relative to

the Balanced Growth Path. However under productivity shocks, the first-best allocation departs from the

Balanced Growth path and the consumption equivalent welfare loss derived above is non-standard.

Appendix E.3. Simple targeting rules

We follow Chung et al. (2015) in implementing a simple version of operational rules. Simple nominal wage

level targeting takes the form:

ŵt + ŷt − ŷft = 0,

where wt = Wt

At
is the normalized wage level, yt = Yt

At
is normalized output, hats refer to log deviations from

steady state and superscript f denotes the corresponding variable under flexible wage allocation. Simple

hysteresis targeting rule is

ht+1 + ŷt − ŷft = 0,

where ht+1 is the hysteresis term defined as a sum of productivity growth rate deviations (from steady state)

because of the history of shocks realized until time t.
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Appendix E.4. ideal statistical filters in the DSGE model

We follow Cúrdia, Ferrero, Ng and Tambalotti (2015) to implement statistical filters in the rational expec-

tations model. Figure E.2 plots the potential output estimates from various (ideal) statistical filters against

the time-t potential output and the actual output under a 28 period realization of binding ZLB from a

two-state Markov chain. Output is plotted in percent deviations from the initial balanced growth path. The

policymaker follows optimal discretionary (MPE) policy. We plot estimates from an exponential filter with

smoothing parameter 61.5, and two HP filters with smoothing parameters 1600 and 160,000 respectively.

The smoother trend from this higher value of λ in HP filter is closer to the time-0 potential output than the

standard HP filter based trend with parameter set to1600.

Figure E.2: Real-time Estimate of Potential Output
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HP (160,000) filter
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Source: Authors’ calculations.
Note: The figure reports one realization of output, potential output, two-sided HP filter, and exponential filter based output
from a two-state Markov chain for the natural interest rate. In period 1, the natural interest rate becomes negative, stays there
for 28 quarters, and then returns to its full employment steady state. The smoothing parameter was fixed at values of 1600
and 160,000 in the two HP filter implementations, and 61.5 in exponential filter. Output is reported in percent deviation from
its pre-shock trend level.

A given stochastic process yt is to be decomposed into a cyclical component and a trend component.

The ideal filters construct a linear projection of the time-series to filter out cyclical components, which

requires knowledge of spectral density of yt. Cúrdia et al. (2015)’s insight was to use the model based

rational expectation forecasts to expand the available sample (building on Christiano and Fitzgerald 2003).

We briefly show the formulas used to construct the ideal filters in the DSGE model, and refer the reader to

Cúrdia et al. (2015)’s appendix for details.

• HP filter: The ideal HP filter based gap (Baxter and King, 1999) with parameter λ is defined as

[1 + λ(1− L)2(1− F )2]x
HP (λ)
t ] = λ(1− L)2(1− F )2yt,
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with lags denoted with L and forwards operators with F . Under rational expectations, Fyt = Etyt+1

can be constructed. λ is set to 1600 as per the standard convention with quarterly time-periods (King

and Rebelo, 1993). We also show estimates from a high smoothing parameter 160,000 to illustrate a

smoother trend.

• exponential filter: It is defined by

[1 + λ(1− L)]xExpt = λ(1− L)yt

λ is set to 61.5 as in Cúrdia et al. (2015) to match the gain of HP filter at frequency ω = 2π/32,

which corresponds to an eight year cycle (King and Rebelo, 1993).

Appendix F. Fiscal Policy Multipliers at the ZLB

We follow Eggertsson (2011) and investigate the fiscal multipliers in an environment with hysteresis. The

key insight is that temporary targeted fiscal policy interventions have long-run implications. We show that

R&D investment subsidies are expansionary; in related work, it has been shown that debt-financed fiscal

policy can be self-financing in hysteresis-prone environments (see Eggertsson et al. (2016)). Similar results

on paradox of toil, paradox of thrift, and expansionary government spending multipliers follow from our

setup. We maintain our assumption of government’s balanced budget.† Further we assume that following

bounds on µ hold (as in Eggertsson (2011)):

µ <
((%− 1)ηg + 1)(γ − 1)

βγ

(1− βµ)(1− µ)− κw(ν + ηC)µη−1
C > 0

Appendix F.1. R&D Investment Subsidy

Assume a temporary research subsidy is implemented τ̂ rS > 0 for S ∈ [1, T e). Under Eggertsson and Woodford

(2003)’s two-state Markov chain assumption, a competitive equilibrium of the model is given by:

for t < T e:

ŷt = ψyr
n
S + ψyτ τ̂

r
S

π̂wt = ψpr
n
S + ψpτ τ̂

r
S

ĝt+1 = ψgr
n
S + ψgτ τ̂

r
S

†In our model, issuances of government bonds may be directly expansionary since bonds enter the utility
function. For comparisons with earlier literature, we here work with government interventions that do not
affect the welfare of the households directly (through bonds in utility for example).
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where ψy =
(1−βµ)η−1

C

(1−βµ)(1−µ)−κw(ν+ηC)µη−1
C

> 0,

ψyτ = 1
1−ηV µ
µ

(%−1)ηg+1

R
Y
%ηg

+
ηz+ηq
rd
y
%ηg
−ηY

(1−βµ)(1−µ)−κwµ
(1−βµ)(1−µ)−κw(ν+ηC)µη−1

C

> 0

ψp = κw(ν+ηC)
1−µβ ψy > 0, and ψg =

1− cy ηC
rd
y %ηg

ψy > 0

ψpτ = κw
1−µβ

[
(1+νη−1

c )((1−βµ)(1−µ)−κwµ)

(1−βµ)(1−µ)−κw(ν+ηC)µη−1
C

− 1
]
> 0.

ψg =
1− cy ηC
rd
y %ηg

ψy > 0

ψgτ =
1− cy ηC
rd
y %ηg

ψyτ −
c
y

rd
y %ηg

ηx = 1
rd
y %ηg

[
ψyτ − c

yηx

[
((1−βµ)(1−µ)−κwµ)

(1−βµ)(1−µ)−κw(ν+ηC)µη−1
C

− 1
]]
> 0.

Proof. The system of equations at time t < T e is in state S (short run) and can be expressed as:

(1− µ)ĉS = µπ̂wS + r̂S

(1− βµ)π̂wS = κw(ĉS + νŷS)

[(%− 1)ηg + 1]ĝS − τ̂ rS = µV̂S + (1− µ)ĉS

rd

y
%ηg ĝS = ŷS −

c

y
ĉS

V̂S =
1

1− ηV µ
[ηV ŷS + ηq(1− µ)ĉS − (ηz + ηq)ĝS ]

We can solve the last three equations to find a relationship between c and y:

ĉS = ηC ŷS − ηxτ̂ rS ; ηC ≡
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

+
ηz+ηq
rd
y %ηg

− ηY[
1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

c
y + (1− µ)

]
+

ηz+ηq
rd
y %ηg

c
y + ηq(1− µ)

< 1

ηx =
1[

1−ηV µ
µ

(%−1)ηg+1
rd
y %ηg

c
y + (1− µ)

]
+

ηz+ηq
rd
y %ηg

c
y + ηq(1− µ)

> 0

Using this, the resulting AD-AS system can be expressed as:

(1− µ)ηcŷS = µπ̂wS + (1− µ)ηxτ̂
r
S + r̂S

(1− βµ)π̂wS = κw(ηc + ν)ŷS − κwηxτ̂ rS

Using these two equations, we can solve the model as above.

The R&D subsidy is expansionary at the ZLB. R&D subsidy is analogous to the investment tax credit

studied by Eggertsson (2011). Note that a supply side expansionary policy is contractionary at the ZLB if it

reduces expectations of inflation. Here, this supply side policy increases the potential output of the economy

without inducing the corresponding deflationary pressures. Instead the expectations of increased demand for

research spending boosts inflation. Hence, a tax subsidy for non-tangible investment can be expansionary
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at the ZLB.

Furthermore, the long-run output is given by:

log Yt+1 = log Y ∗t+1 + (T e − 1)ψgr
n
S + (T e − 1)ψgτ τ̂

r
S ; ∀t ≥ T e

The long-run output is higher by the increase in productivity growth rate achieved by higher research

subsidies during the binding ZLB. Thus the long-run output multiplier for research subsidy is given by:

∂YL
∂τ̂ rS

= (T e − 1)ψgτ > 0

In contrast to an exogenous TFP growth model, temporary R&D subsidies raise output permanently.†

Appendix G. Additional Figures

†We leave the analysis for various fiscal stabilization policies under endogenous growth (Denes et al.,
2013; Mehrotra, 2018) for future work. See also Eggertsson and Garga (2019) for comparison of multipliers
under sticky information and sticky prices assumptions.
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Figure G.3: Optimal Policy at the Zero Lower Bound
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Source: Authors’ calculations.
Note: The figure reports one realization of output, inflation, productivity growth rate and the nominal interest rate from a two-
state Markov chain for the natural interest rate under alternate policy equilibria. In period 1, the natural interest rate becomes
negative and stays there for 28 quarters, and returns to the full employment steady state. The realizations under a Taylor rule,
Markov-Perfect Equilibrium (or discretionary) optimal policy, and optimal commitment policy are shown. TFP growth rate
and wage inflation are plotted in (annualized) percent deviation from steady state. Output in period −1 is normalized at 1.
Black line in the output graph plots evolution of deterministic trend at an annual 2% steady state growth rate.

Appendix H. Optimal policy under alternate shocks

In the main text, we focused on shocks such that the economy exhibits divine coincidence. The virtue of this

exercise was that it did not matter whether output hysteresis was defined as deviation from the (time-0) first

best, (time-0) natural rate or pre-recession trend output. In this section, we consider alternate demand and

supply shocks, and analyze the optimal response of monetary policy in each case. The distinction between

the three equilibrium concepts will become crucial now.
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Figure G.4: Exogenous Productivity Comparison
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Source: Authors’ calculations.
Note: The figure reports one realization of output, inflation, productivity growth rate and the nominal interest rate from a
two-state Markov chain for the natural interest rate under alternate policy equilibria. In period 1, the natural interest rate
becomes negative, stays there for 28 quarters, and returns back to the full employment steady state. Exogeneous growth denotes
optimal policy in the exogenous growth benchmark (shutting down changes in R&D and TFP growth) from same steady state
as the endogenous growth calibration. The optimal rule (dashed) denotes the optimal commitment equilibrium allocation with
endogenous growth. FP growth rate and wage inflation are plotted in (annualized) percent deviation from the steady state.
Output in period −1 is normalized at 1. The black line in the output graph plots the evolution of the deterministic trend at an
annual 2% steady state growth rate.

Appendix H.1. Discount rate shocks

Discount rate shocks are modeled as shocks to household’s discount rate. A positive shock to the discount

rate temporarily makes the household more patient. This transmits to innovation through two opposing

channels: One, lower discounting of future profits increases the present discounted value of innovation,

thereby increasing investment in R&D. Two, in the presence of nominal rigidities, increased patience lowers

aggregate consumption demand. If the aggregate demand channel is strong enough, output falls, thereby
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Figure G.5: Alternate Rules at the Zero Lower Bound
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Source: Authors’ calculations.
Note: The figure reports one realization of output, inflation, and the nominal interest rate from a two-state Markov chain for
the natural interest rate under alternate policy equilibria. In period 1, the natural interest rate becomes negative and stays
there for 28 quarters, and returns to the full employment steady state. The realizations under a Taylor rule, Markov-Perfect
Equilibrium (or discretionary) optimal policy, optimal commitment policy, hysteresis targeting and nominal wage level targeting
rule are shown. TFP growth rate and wage inflation are plotted in (annualized) percent deviation from steady state. Output
in period −1 is normalized at 1. Black line in the output graph plots evolution of deterministic trend at an annual 2% steady
state growth rate.

reducing the investment in R&D due to a shrunken market (aggregate demand effect). Under the first-best

allocation, however, prices are flexible, so there is no negative aggregate demand channel. This leads to an

increase in R&D relative to the pre-recession trend (figure H.6a, squared-blue graph). In the presence of

nominal rigidities, however, the overall effect on R&D is determined by two opposing forces as described

above. In our calibration, the aggregate demand channel dominates and investment in R&D and hence, TFP

growth rate and output fall under a standard Taylor rule (figure H.6a, red graph).
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Figure H.6: Path of GDP under TFP and wage markup shocks

Note: The figure reports model based evolution of GDP under discount rate (panel a), TFP (panel b) and wage markup shocks
(panel c). Shocks are parametrized such that output falls by 1 percent on impact. For illustration, persistence of shocks is
chosen to equal 0.9. Output in period -1 is normalized at 1. Black line plots evolution of deterministic trend at an annual 2%
steady state growth rate.

The response of the first-best allocation and the flexible-wage allocation (figure H.6a, dashed-maroon

graph) differ because of breakdown in divine coincidence under discount rate shocks. The entrepreneurs

do not internalize the long-run benefits of innovation compared to the social planner despite the presence

of an efficient steady state (Nuño, 2011). Replicating the flexible wage allocation is no longer an optimal

policy. Infact, the natural rate of interest r-star is an endogenous object in this environment. Under optimal

commitment equilibrium, the policy maker lowers the real rate in order to closely replicate the welfare gains

under first-best allocation. This results in overshooting of output relative to both the flexible-price GDP

and Taylor rule GDP (figure H.6a, crossed-blue graph).

Appendix H.2. Stationary TFP shocks

A negative productivity shock shrinks the resources available for consumption and R&D investment. It

is optimal to reduce R&D investment in response to a temporary reduction in the level of total factor

productivity. Temporarily lower productivity growth, as a result of low investment, cumulates to generate a

permanent output gap relative to the pre-shock trend. Hence, the time-0 first best allocation features a unit-

root process for output (figure H.6b, squared-blue graph). Since optimal monetary policy approximates the

first-best allocation, the optimal commitment solution also admits output hysteresis (figure H.6b, crossed-

blue graph).

Appendix H.3. Wage markup shocks

In the presence of cost-push shocks, the central bank faces a tradeoff in stabilizing short-term inflation and

long-run output. The optimal commitment allocation (figure H.6c, crossed-blue graph) admits a permanent

output gap. This result is a generalization of the short-run tradeoff in the exogenous growth new Keynesian

model. With exogenous growth, the central bank counters a positive wage markup shock by committing to

generating a negative output gap in the future. The same commitment under endogenous growth implies
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Table H.1: Policy Rules : Welfare Comparison

Policy Rule Discount rate shock Markup shock Productivity Shock Liq Demand Shock MP shock

Optimal rules

Commitment 0.0018% 0.15% 0.00008% 0 0
Discretion 0.0035% 0.827% 0.0001% 0 0

Simple rules

Taylor rule eq 7 0.0237% 2.21% 0.0003% 0.020% 0.025%
Hysteresis Targeting 0.0022% 5.32% 0.0013% 0 0
Wage Level Targeting 0.0022% 0.352% 0.00011% 0 0
Nominal GDP targeting 0.0022% 4.11% 0.0005% 0 0
Notes: Values report the conditional welfare loss starting from an efficient steady state. Welfare losses are computed as an
average over 10,000 simulations, each starting at the same efficient steady state. Loss is expressed in consumption equivalent
units (in percents of steady state consumption).

a reduction in market size for entrepreneurs and hence reduced incentive to undertake R&D. Thus, in a

bid to reduce current wage inflation, the central bank keeps output permanently below the time-0 first best

allocation. The inflation stabilization objective generates a long-run tradeoff for the central bank.†

Appendix H.4. Welfare analysis

In table H.1 we report the consumption equivalent welfare losses conditional on starting from an efficient

steady state. These losses are computed as an average over 10,000 simulations with each starting at the same

efficient steady state. Hysteresis targeting rule is of the form ht+1 + yt − yft = 0 rule, where superscript f

denotes flexible wage allocation, ht is (log) hysteresis determined at time t− 1 and yt is (log) stationarized

output. Wage level targeting rule is implemented as Wt + yt − yft = 0, where Wt is the (log) nominal wage.

Nominal GDP targeting takes the form: Pt + ht+1 + yt − yft = 0. In response to demand shocks, hysteresis

targeting closely replicates the welfare achieved under optimal commitment. In response to supply shocks,

it is an order of magnitude more costly (in terms of welfare) to implement hysteresis targeting relative to

the optimal policy. Wage level targeting rule, which serves as the analogue of a price level targeting rule, is

found to perform well in terms of welfare losses across all considered shocks. This highlights the importance

of correctly identifying the source of business cycle fluctuations in the design of optimal monetary policy.

Appendix I. Quantitative Evaluation

So far, we advanced a channel for hysteresis by allowing monetary policy to have an effect on R&D invest-

ments and hence TFP growth. Second, we solved for optimal policy at ZLB assuming a liquidity demand

†Note that the time-0 first best allocation is a trend stationary process (figure H.6c, squared-blue graph).
This is because we assume that the social planner has access to time-varying taxes to counter these shocks
(Correia et al., 2013).
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shock. Our analysis raises two questions: (i) does monetary policy influence productivity enhancing invest-

ments and the level of TFP in the data, and (ii) can a realistically calibrated liquidity demand shock generate

a sizable recession. We answer both questions in the affirmative. We show empirical evidence consistent

with key model predictions regarding monetary policy shocks. Contractionary monetary policy temporarily

reduces R&D investment, firm entry, and has a persistent effect on TFP. Further, we conduct numerical

exercises using a medium scale version of our model. A one time increase in liquidity demand, calibrated to

match the increase in premium associated with very liquid assets during the financial crisis, can explain a

third of the drop in output observed in the data during the Great Recession.†

Appendix I.1. Empirical Evidence

We estimate dynamic causal impacts of monetary policy on R&D investment, firm-entry and aggregate TFP.

We interpret firm entry as an indicator for productivity enhancing investment for two reasons. First, we

observe R&D investment for large firms in the data. These firms may not be significant drivers of TFP

growth. Second, Decker et al. (2014), among others, have shown that firm entry is a significant driver of

TFP growth. Consistent with the creative destruction literature, we interpret the number of innovating

sectors in our model as counterpart of net firm entry in the data. The estimated impulse responses lend

support for key predictions of our model: a contractionary monetary policy shock has a transitory negative

effect on R&D investment and firm entry, and a persistent negative effect on TFP.

Empirical Strategy

Our empirical strategy is based on the recent literature (Jordà et al. 2019, and Ramey and Zubairy 2018)

that combines the instrumental variables with the local projections (LP-IV) approach to directly estimate

the structural IRFs. The series of (narratively- and high frequency-) identified monetary surprises emt are

treated as proxy for the true shocks εmt . In the first-stage, we instrument a policy indicator (fed funds rate)

with the relevant proxy.† In the second stage, we run a sequence of predictive regressions of the dependent

variable on the instrumented policy indicator for different prediction horizons. The estimated sequence of

regression coefficients of the instrumented policy indicator are then the impulse responses.

†Jordà et al. (2020) show evidence of long-run effects of monetary policy shocks using trilemma identifi-
cation for seventeen advanced economies over 1890–2015. Palma (2019) finds persistent real effects of money
injections through discoveries of precious metals from 16th to 18th century.

†The use of external instruments or proxy SVAR was developed by Stock (2008), and extended by
Stock and Watson (2012) and Mertens and Ravn (2013). Gertler and Karadi (2015) combine high-frequency
identification and proxy SVARs to estimate monetary policy impulse responses. Stock and Watson (2017)
discuss connections between proxy SVAR and LP-IV approaches.
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More specifically, we estimate the following second-stage LP specification for horizons h ∈ 0,..., H:

yt+h = αh + βh ˆffrt +
∑
p

θphZt−p + νt+h (I.1)

ˆffrt is the predicted policy instrument from the first-stage regression using identified monetary policy instru-

ments emt . The set Zt includes lags of dependent variable, the policy indicator, the policy instrument, and

the current and lagged conditioning variables that identify exogenous fluctuations in the monetary policy in-

strument and improve precision of standard errors (see Stock and Watson 2017). The conditioning variables

are log real GDP and log GDP deflator. The dynamic coefficients of interest are, therefore, the estimates of

βh for h = 0, 1, ...,H. We compute standard errors based on heteroskedasticity and autocorrelation robust

covariance matrix (Newey-West) estimators. The impulse responses for R&D investment at the firm-level are

estimated in a similar manner, by conditioning on time-invariant firm-fixed effects, an aggregate time trend

as well as two lags of time-varying firm-level controls (assets, cash holdings, short-term debt, and annual

employment). The standard errors, in this case, are clustered at the firm-level.

Data: Instruments and Variables of Interest

We obtain two sequences of monetary policy surprises identified in the empirical literature. One is

Figure I.7: Policy Indicator and Monetary Policy Surprises
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Note: The figure plots the Federal Funds rate against the monetary surprises. Two measures of monetary surprises are used
in the main text. On the left, we plot the Romer & Romer (2004) narrative-identified monetary policy instruments. On the
right, we plot the changes in current-month federal funds rate futures in a narrow 30 minute window around FOMC meeting
announcements. These daily indicators are aggregated to the monthly frequency by adjusting for number of days left in
the month. Monthly monetary surprises are summed to get the quarterly frequency aggregates. We take the FOMC days’
announcement surprises from Gürkaynak et al. (2005)

narratively-identified series from Romer and Romer (2004) (RR). They decompose changes in the intended

federal funds rate at the FOMC meetings into a systematic and a residual shock component. The resid-

ual shock is extracted from unexplained variation in a regression of target funds rate changes on changes

in Greenbook forecasts of inflation, output growth and unemployment. The original monthly series from

1969-1996 has been recently extended by Wieland and Yang (2016) until 2007. The second set of surprises
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are measured using high-frequency data on the federal funds futures contracts. The rates on these contracts

reflect market expectations of the average federal funds rate during that month. To identify the exogenous

part of announced changes in monetary policy, Gürkaynak et al. (2005) (GSS) calculate changes in the traded

rate in a narrow 30 minutes window around the FOMC press releases. We obtain this series for 1990-2007

by combining the data from GSS with that extended by Gorodnichenko and Weber (2016) and refer to these

as HFI (high frequency instruments). An unweighted sum of these series is used to convert monthly into

quarterly frequency. Figure I.7 plots series of obtained shocks against the effective federal funds rate. We

use information on surprises until 2007Q4, before the financial crisis.†

As measures for R&D investment, we use two quarterly data series (denoting sample lengths used in

parentheses): (i) log R&D investment deflated by GDP deflator available from NIPA (1969-2007), and (ii)

firm-level R&D investment constructed from COMPUSTAT database (1990-2007). The construction of

firm-level R&D investment data is described in the Appendix and follows the methodology common in the

literature (Brown, Fazzari, and Petersen 2009, Terry 2017).† As measures of firm entry, we obtain two aggre-

gate data series: (1) log number of business incorporations, and (2) (net) establishment births/(establishment

births + establishment deaths). The first series is aggregated to quarterly level from a monthly Survey of

Current Business produced until 1994 run by the Bureau of Labor and Statistics (BLS). The second series

comes from a quarterly National Private Sector Business Employment Dynamics Data of BLS available 1993

onwards. Finally, log utilization-adjusted TFP and non-adjusted TFP measures are constructed by cumu-

lating the respective TFP growth rate series obtained from (Fernald, 2014) over 1969-2007.

Results

Figures I.8 and I.9 report our main empirical results using the HFI and RR instruments over different sam-

ple lengths. We report deviations from a constant trend following a 100 bps increase in federal funds rate.

The shaded areas represent the 95% confidence intervals. We report the F-statistics for respective IRFs in

the figures to verify instrument relevance. In most cases, the F statistic is above 23, a threshold for ten

percent level constructed by Montiel-Olea and Pflueger (2013). Because of the shorter sample length, the

HFI instrument does suffer from the weak-instruments issue.

In figure I.8, we plot the IRFs for utilization-adjusted TFP and raw TFP. Consistent with the dynamics

of the model, the utilization-adjusted TFP declines gradually after a monetary policy shock. The IRFs for

raw TFP decline by more than the fall in adjusted TFP because of higher fluctuations in factor utilizations

induced by monetary policy shocks. The leveling off of the decline in raw TFP is consistent with the

†We exclude the rate cut of September 2001, to avoid the noise in the rates caused by the terrorist
attacks.

†To provide a broad picture, the firm-level R&D sample data in year 2000 contained 3441 firms for which
R&D investment information was available. These firms collectively employed 9.7% of total US Employment
(Fred code: PAYEMS), spent 86% of total private R&D measured by NIPA and had sales worth 26% of US
nominal GDP. Data construction discussed in Appendix I.2.
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Figure I.8: Response of utilization adjusted TFP and TFP to 100 bps increase in Federal Funds
Rate
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Notes: The figure plots the estimated impulse response functions for log utilization adjusted TFP and non-adjusted TFP.
Time is in quarters. Sample length, and instrument used are denoted on top of the figures. IRFs are computed using a
local-projections IV approach. Current and two past-lagged values of log real GDP and inflation rate are used as conditioning
variables. Regressions also include past values of the proxy, the federal funds rate, and the dependent variable. Kleibergen-
Paap F statistic for weak instruments are reported in the figures. The standard errors are calculated using HAR-Newey-West
standard errors. The shaded areas denote 95% confidence intervals.

persistent decline in adjusted TFP. This decline in TFP reaches -0.6% after 12 quarters (estimated on data

from 1969-2007).

In Figure I.9, we plot the response of the number of new incorporations, establishment births, aggregate

R&D and corporate R&D investments. Contractionary monetary policy shocks have a negative effect on

these indicators. There is a delayed negative effect on R&D investment, which is not statistically significant

for aggregate R&D but is statistically significant at the firm-level. Our benchmark model does not feature

adjustment costs or frictions in R&D investment. As a result, the benchmark model exhibited a linear

response of R&D investment to monetary policy shocks. In the medium scale model, we introduce adjustment

costs in order to generate the curvature in the R&D response. The empirical findings align with the key

predictions of our model: monetary policy influences long-run level of TFP. We next use these empirical

findings to assess the quantitative relevance of our model.

Appendix I.2. Additional details on data

Appendix I.2.1. Sources

• Real GDP, GDP deflator, unemployment rate, R&D Investment (1969 - present): St. Louis FRED

database

• TFP (Quarterly, 1969 - present): Fernald (2014). We constructed the annualized TFP growth rates

into a log TFP series.

• Number of new business incorporations (Monthly, 1969 - 1994): Survey of Current Business Jan-
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Figure I.9: Response of Firm Entry, Aggregate R&D and Firm-level R&D to 100 bps increase
in Federal Funds Rate
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Notes: The figure plots the estimated impulse response functions for firm entry, aggregate R&D and firm-level R&D. Two
indicators for firm-level R&D are used: (1) log number of new incorporations available over 1969–1994, and (2) log number of
net establishment births available since 1993Q2. Time is in quarters. Sample length, and instrument used are denoted above
each figure. IRFs are computed using a local-projections IV approach. Current and two past-lagged values of log real GDP
and inflation rate are used as conditioning variables. Regressions also include past values of the proxy, the federal funds rate,
and the dependent variable. Kleibergen-Paap F statistic for weak instruments are reported in the figures. Firm -level R&D
regressions also include two lags of assets, short debt, cash, employment, and firm-fixed effects. The standard errors are robust
clustered at the firm-level. The shaded areas denote 95% confidence intervals.

uary/February 1996 supplement titled “Sources for Business Cycle Indicators” (discontinued) from

the BEA website

• Quarterly net establishment births (Quarterly, 1993Q1 - present): National Private Sector Business

Employment Dynamics Data, BLS

• R&D Compustat (Monthly, 1969 - 2010): Quarterly and Annual COMPUSTAT database from WRDS,

(Quarterly, 1990Q1 - present)

• Romer Romer shocks: Romer and Romer (2004), Wieland & Yang (2016)

• High frequency shocks (Monthly, 1990 - 2010): Gorodnichenko & Weber (2016) and Gurkayanak, Sack

& Swanson (2006).

Appendix I.2.2. Firm level R&D data construction

We downloaded COMPUSTAT data from the US Fundamentals Quarterly file available through Wharton

Research Data Services (WRDS). Annual employment data came from the US Fundamentals Annual file.

We follow Terry (2017) and make the following sample restrictions:

• Nonmissing total assets atq, SIC code sic, book value of capital ppentq, GAAP earnings ibq, operating

earnings before depreciation EBITDA oibdpq, total sales saleq, value of equity ceqq

• Positive levels of assets and book value of capital: atq, ppentq > 0
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• No utilities or financial firms as classified by SIC code: sic not in 6000’s or 4900’s

In the baseline regression at horizon 0, the sample included 4271 unique gvkey and 90385 firm-quarter

observations between 1992Q1 and 2007Q4. Nominal variables were deflated using the GDP deflator. R&D

investment is defined as the difference between log R&D stock in two consecutive periods. Following Brown,

Fazzari & Petersen (2009), and Kabuckuoglu (2014), we construct R&D stock using perpetual inventory

method as follows:

RDstock
i,t = (1− δR)RDstock

i,t−1 + XRDQi,t

where XRDQi,t represents the real R&D expenditures of firm i at time t; δR is the depreciation rate . We

assume δR = 15%(annualized), standard practice in the innovation literature.. Initial period R&D stock is

assumed to be
XRDQi,0

δ , where XRDQi,0 is the first observation of R&D expenditures for firm i. We define

R&D investment as:

∆R&Di,t = log RDstock
i,t+1 − log RDstock

i,t

Appendix I.3. Medium Scale DSGE Model with Schumpeterian growth

Appendix I.3.1. Model

For brevity, we sketch the additional features introduced into the benchmark model and leave the detailed

model discussion to Appendix J. Capital is introduced in the production of intermediate good, following

Howitt and Aghion (1998). Households own and accumulate capital subject to investment adjustment costs

and rent it out to the intermediate good monopolists. The specification for investment adjustment costs fol-

lows the new Keynesian literature (Christiano et al., 2005). We append price-rigidity by introducing a retail

sector that sells the final good produced by the perfectly competitive producer. Monopolistically competitive

retailers set prices on a staggered basis following Calvo (1983). Further, we allow for variable capital utiliza-

tion, and (internal) habits in consumption. Relative to the existing new Keynesian literature, we introduce

adjustment costs in R&D expenditure. A particular functional form we use is Srd = κ
2

(
Rt

(1+gss)Rt−1
− 1
)2

,

which the entrepreneur takes as given while making her R&D investment decision. This feature helps the

model match the curvature in R&D responses that is found in empirical IRFs (see Figure I.9 discussed above,

as well as Moran and Queraltó 2018).

Appendix I.3.2. Calibration

We calibrate the model at a quarterly frequency. Table I.2 reports the calibrated values of parameters, that

we discuss next:

Steady State Parameters

Steady state labor supply is normalized to 1. Six parameters are set to match six steady state targets. Table
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I.3 reports the steady state moments targeted by the model. We set β to 0.9990, to match an annualized real

interest rate of 2.40%, along with (annualized) steady state output growth rate of 2%. Innovation step size

γ is set to 1.55 to match the creative destruction rate of 3.6%. Howitt (2000) selects this value as it matches

the empirical finding that a non-innovating U.S. company loses value at a 3.6-percent annual rate. Capital

depreciation rate is set to an annual rate of 10% and steady state price markup is set to 15%. These are

commonly used values in the business cycle literature. We calibrate α, δ, and % such that model replicates

following (annual) steady state targets: Gross Private Domestic investment to GDP ratio of 17.2%, growth

rate of 2%, R&D to GDP ratio of 2%, and Profits to GDP ratio of 6.2%. These are calculated from quarterly

NIPA tables over 1947-2007.

Table I.2: Parameters

Steady State Parameters
β λp δk α γ

Discount
factor

Price s.s.
markup

Capital
depreciation

rate

Capital
share

Innovation
step size

0.999 0.15 0.025 0.28 1.55

% δ µ

Calibrations
Inverse

innovation
elasticity

Innovation
cost

parameter

Probability of
patent loss

1. low % 1.07 5.88 0.0285

2. high % 3.08 7.47×104 0.0

Parameters Characterizing the Dynamics

ν λw θp θw h a′′(1)
a′(1)

Inverse
Frisch

elasticity

Wage s.s.
markup

Price Calvo
probability

Wage Calvo
probability

(Internal)
habit

Capital
utilization

cost

1.00 0.15 0.750 0.750 0.5 4

κ S”(1) φπ φy 1− 1
λg

R&D
adjustment

cost

Investment
adjustment

cost

Taylor rule
inflation
response

Taylor rule
(normalized) output

response

Government
spending

share

0.768 0.75 1.50 0.125 0.20

Notes: The table shows the parameter values of the model for the baseline calibration.

Table I.3: Targets and Model-Implied Values in Calibration of Steady State Parameters

Targets GDP growth rate Creative
Destruction rate Real rate Investment/GDP

Ratio
R&D/GDP

Ratio
Profits/GDP

Ratio

Data 2 3.6 2.40 17.18 2 6.50
Model 2 3.6 2.40 17.18 2 6.59

Notes: The table shows the empirical targets and the model-implied values in the calibration of the six steady state parameters.

The sample used to compute the data counterparts of the targets is 1948Q1-2007Q4.

We consider two variants of the model to vary the innovation sensitivity. Under first calibration, following
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Benigno and Fornaro (2018), we introduce an exogenous probability of patent loss µ = 11.4%. This implies

that value of owning an intermediate goods’ patent is modified to:

Vt = Γt + (1− zit − µ)EtQt,t+1Vt+1

µ is chosen in order to match the (annual) R&D depreciation rate of 15%. An exogenous probability of

patent loss reduces profitability from successful innovation, and in turn reduces R&D investment. Ceteris

paribus, a higher exogenous patent loss probability requires higher returns from R&D investment, and thus

lower %. As a result, we find % = 1.07. Schumpeterian growth literature following Aghion and Howitt (1992)

has largely focused on the analytically tractable case of % = 1 (cf. Nuño 2011). There is an extensive empir-

ical literature that estimates this parameter (surveyed in Hall et al. 2010) and finds a relatively wide range

% ∈ (1.10, 5). Low % implies higher sensitivity of innovation probability to R&D investment, which invariably

allows the model to generate large growth rate fluctuations.† Additionally, we recalibrate the model without

the exogenous patent loss to get a calibration with higher % = 3.08.

Parameters characterizing Endogenous Propagation

Remaining set of parameters are chosen from the standard business cycle literature, and we closely follow

Del Negro et al. (2017) in calibrating these parameters. Inverse Frisch elasticity of labor supply is set to 1,

wage markup is set to steady state markup of 15% to mirror the degree of monopolistic competition assumed

in the product market (λw = 0.15). Nominal rigidities parameters are chosen, following the empirical evidence

of Nakamura and Steinsson (2008) who find an average duration of price and wage contracts to be 4 quarters

(θp = θw = 0.75). We calibrate habits parameter at h = 0.5. Varying these parameters to ranges considered

in the literature does not significantly change our results. Investment adjustment cost parameter S”(1) is

set to 0.75, consistent with the estimates of price elasticity of investment (in the range of 1.22 − 1.36) in

Eberly (1997) as well as Christiano and Fisher (1998).

As discussed above, we introduce curvature in R&D investment in order to replicate the curvature in

the estimated impulse responses. Brown et al. (2009) estimate an Euler equation model for R&D investment

at the firm level using Compustat data and find a baseline estimate for κ
2 = 0.384. Consequently, we set

κ = 0.768.†

†The marginal probability of success is decreasing in %, keeping fixed the profitability upon successful
innovation. Exogenous patent loss reduces the profitability of successful innovation, for a given probability
of success.

†They estimate the following equation for firm j, investing R&D rdj,t at time t:

rdj,t = β1rdj,t−1 + β2rd
2
j,t−1 + controls + fixed effects + errorj,t

We interpret β2 to be our model equivalent of κ
2 .
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Policy Rule parameters and Exogenous shocks

We set the feedback coefficient on inflation and (normalized) output at 1.50 and 0.125 respectively (Taylor,

1993). Steady state government spending share (1− 1
λg

) is set to 0.20. We discuss the persistence of shocks

in the next exercises.

Appendix I.3.3. Quantitative Assessment

Impulse Response Functions

We shock the economy with a monetary policy shock that generates a 100 basis point (annualized) increase

in nominal interest rate on impact. This is the same shock we used in the estimation in Appendix I.1, so that

the results are comparable. We choose the persistence of monetary policy shock equal to 0.9, a commonly

used estimate in the literature. We report the model IRFs in percent deviations from steady state at time 0.

Figure I.10 plots the IRFs for two calibrations of the model against the estimated IRFs for R&D investment,

average firm entry, and utilization-adjusted as well as raw TFP. † While we do not explicitly model firm entry,

we interpret probability of innovation zt as the average firm entry in the following period consistent with

the creative destruction aspect of our framework. The monetary policy shocks induce a negative transitory

response for R&D investment, average firm entry and a permanent effect on TFP. Because of the presence of

adjustment costs in R&D investment, R&D impulse response exhibits an U-shaped response, as seen in the

estimated IRFs. R&D investment and firm entry are important sources of TFP growth in the model. While

firm entry and R&D investment decline immediately, endogenous slow TFP growth results in a permanently

lower level of TFP. Because of absence of technology adoption, TFP monotonically declines to a permanently

lower level. As in the data, initial decline in raw TFP exceeds that of the adjusted TFP because of variability

in factor utilizations. Overall, the model replicates the estimated dynamic impacts.

Importantly, the impulse response comparisons highlight a tradeoff in calibrating a value for %. Lower

% implies higher sensitivity of R&D investment and hence a significant innovation gap emerges. The model,

however, is unable to match the empirical response of R&D. Even for the extreme value of % = 3.08, the

model predicts a larger fall in R&D investment relative to that observed in the data. On the other hand, the

model with low % closely replicates the empirical impulse responses for TFP. Given the low responsiveness

of R&D investment in the data, the model tends to fit the data under a firm entry interpretation. To the

extent firm entry and other forms of investment are significant drivers of TFP growth, there is little reason

to treat R&D expenditure in the model solely as the R&D expenditure incurred by publicly-traded firms.

In our model, cyclical sensitivities of R&D expenditure and firm-entry are regulated by the same parameter

varrho. A more micro-founded model that disconnects these important drivers of TFP growth can help

rationalize the estimated TFP sensitivity to the estimated R&D and firm-entry responses respectively. Our

†In the model, we define raw TFP as sum of two terms (1) deviations in capital utilization from steady
state, and (2) deviations in log TFP (pure) from its deterministic trend at time 0.
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Figure I.10: Response of Firm Entry, Aggregate R&D and Firm-level R&D to 100 bps increase
in Federal Funds Rate
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Notes: The figure compares model-implied IRFs to the estimated impulse response functions for utiltization adjusted TFP, raw
TFP, firm-level R&D and net establishment births. Time is in quarters. Sample length, and instrument used are denoted at
the top of each row. IRFs are computed using a local-projections IV approach. Current and two past-lagged values of log real
GDP and inflation rate are used as conditioning variables. Regressions also include past values of the proxy, the federal funds
rate, and the dependent variable. Kleibergen-Paap F statistic for weak instruments are reported in the figures. The standard
errors are calculated using HAR-Newey-West standard errors. The shaded areas denote 95% confidence intervals. Firm -level
R&D regressions also include two lags of assets, short debt, cash, employment, and firm-fixed effects. The standard errors are
robust clustered at the firm-level. The model impulse responses are extracted from two calibrations with % = 1.07 and % = 3.08.
In the model, IRFs are traced following a one-time exogenous shock in the federal funds rate of 100 bps (annualized).

short exercise nevertheless is useful in that the bounds on % are likely to be in the range of one and three in

reduced form-modeling of endogenous TFP growth.†

†The range of values for % considered is consistent with wide range of estimates found in aggregate and
firm level studies (see Hall et al. 2010).One of the commonly cited estimates come from Griliches (1990),
who surveys the literature estimating relationship between R&D and patents (as an indicator of innovation
output). Results differ on the estimation strategy: cross-sectional estimates of % lie in range of 1 - 1.67,
while within-firm time-series estimates are in the range of 1.5-3.3. Kortum (1993) reports estimates in the
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Simulating the Great Recession

We now simulate the model with a liquidity demand shock to study its ability to explain the Great Reces-

sion episode. In the model, the liquidity demand shock is characterized by the rise in premium for holding

Treasuries - referred to as the convenience yield (Krishnamurthy and Vissing-Jorgensen, 2012).The size of

the liquidity demand shock is calibrated to generate a rise in the liquidity premium of 180 basis points.

This is the preferred parameter choice of Del Negro et al. (2017), who estimate the convenience yield using

financial market data.† We chose the persistence of the shock to equal 0.938 and 0.95 in two calibrations

of %. These are chosen in order to generate a ZLB episode with expected duration of six quarters. This

expected duration lies within the range of estimates found in financial market surveys during 2009-2010.

Figure I.11 plots the evolution of output, inflation and nominal interest rate to the calibrated liquidity

demand shock and compares it with the data, for sixteen quarters starting in 2008Q3. Column 1 shows the

changes in the data relative to 2008Q3 (Lehman Brother’s bankruptcy). We report percentage change in

output from a linear trend estimated from 2000Q1 to 2007Q4, normalized to zero in 2008Q3. Output is

constructed as the log sum of consumption, and investment from the NIPA tables. For inflation, we report

the deviation of the annualized percentage change in the GDP deflator from 1.6% annual inflation rate. We

chose this number to get the model to match annualized nominal interest rate of 4%. The nominal interest

rate is the effective federal funds rate.

Given a relatively modest shock, the model can explain a significant component of the decline in out-

put (-2.6% in the model versus -8.6% in the data). Furthermore, it implies a reduction in inflation of 0.9

percentage points following the shock, compared to an initial drop of 1% in the data. The nominal interest

rate hits the zero lower bound, stays at zero for six quarters and sluggishly recovers back. We emphasize

the close fit in the dynamics of the model with the data. The model implies no recovery to the 2000Q1-

2007Q4 trend, as has been observed in the data. Calibrations of % = 1.07 and 3.08 imply a 1.25% and

0.08% permanently lower output respectively, relative to pre-recession trend. In figure I.11, we compare the

evolution of consumption, investment and R&D investment with the data. The model replicates the broad

empirical pattern of generating more decline in investment relative to consumption. Moreover, it generates

a persistent decline in consumption relative to investment. The model with low % (line with crosses) implies

a more sluggish recovery in consumption relative to high % (line with circles). Because of higher sensitivity

of R&D investment, low % generates a counterfactually large response of R&D investment. In the data,

R&D investment declined by 6%, while low % implies a decline of 16%. In contrast, the model with high %

range of (1.3,10).
†The results are qualitatively similar, but larger in magnitude, when we calibrated the shock to match

rise in spread between AAA and 20 year Treasuries, or the spread between most recently used and older 10
year Treasury bonds of same maturity, called the on-the-run/ off-the-run spread.
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Figure I.11: Response of Output, Inflation, and the Nominal Interest Rate to the Liquidity Shock
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Notes: The figure compares the evolution of output, inflation, and the nominal interest rate in the data (left column) and in the
two variants of the model in response to the calibrated liquidity shock (right columns). The data start in 2008Q3. Both data
and model are plotted for 16 quarters. Output in the data (top-left) is the sum of consumption and investment, in percentage
log-deviations from a linear trend estimated from 2000Q1 to 2007Q4, and is normalized to zero in 2008Q3. Inflation in the data
(middle-left) is the annualized quarterly inflation rate of the GDP deflator minus 1.6%. Value of 1.6% is chosen for the model
to hit a steady state nominal interest rate of 4%. The interest rate in the data (bottom-left) is the annualized effective Federal
Funds Rate. Output in the model (top-right) is the log-deviation from steady state in percentage points. Inflation in the model
(middle-right) is expressed in annualized percentage points. The interest rate in the model (bottom-right) is the annualized
level of the nominal interest rate in percentage points (the horizontal line is its steady state value).

generates a 1.8% decline in R&D investment.†

Hysteresis targeting during the Great Recession

How does a hysteresis targeting rule perform in a quantitative model? We assume that the central bank sets

interest rate using the following hysteresis-augmented interest rate rule, with φh = 0.5:

ît = max

(
− ī

1 + ī
, φππ̂

w
t + φy(L̂t − L̂ft ) + φhht+1 + ε̂it

)
(I.2)

†Note that persistence of the simulated shock is calibrated such that the expected duration of ZLB is six
quarters. Consequently, the recession is less severe. In the Appendix Appendix J.10, we show that a more
persistent shock where the ZLB is expected to bind for twelve quarters performs better at replicating the
drop in output, inflation, consumption and investment in the data. Moreover, the drop in consumption is
more persistent and less severe than output and investment. Because of pro-cyclicality of R&D investment,
a more severe recession, however, also implies a larger drop in R&D.
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Figure I.12: Response of Consumption, Investment, R&D Investment, and Convenience Yield
to the Liquidity Shock
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Note: The figure compares the evolution of consumption, investment, R&D investment, and convenience yield in the data (left
column) and in the model in response to the calibrated liquidity shock (right column). The data start in 2008Q3. Both data
and model are plotted for 16 quarters. Consumption in the data (top-left) is total consumption minus durable consumption.
Investment in the data (top-middle-left) is investment plus durable consumption minus Intellectual Property Investment. R&D
Investment in the data (bottom-middle-left) is the Intellectual Property Investment. These three variables are expressed in
percentage log-deviations from a linear trend estimated from 2000Q1 to 2007Q4, and are normalized to zero in 2008Q3. The
convenience yield in the data (bottom-left) is in annualized basis points (produced by (Del Negro et al., 2017)). Consumption
(top-right), investment (top-middle-right), and R&D investment (bottom-middle-right) in the model are log-deviations from
steady state in percentage points. The convenience yield in the model (bottom-right) is the annualized absolute deviation from
steady state expressed in basis points.

where superscript f denotes the flexible-price-wage allocation, hysteresis ht+1 = ht + ĝft+1, where gt+1 is

determined by R&D investments in period t.

Figure I.13: Hysteresis Targeting: Response of Output, Inflation, and the Nominal Interest Rate
to the Liquidity Shock
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Notes: The figure compares the evolution of output, inflation, and the nominal interest rate under Hysteresis targeting rule
and assumed Taylor rule in the model with % = 1.07 in response to the calibrated liquidity shock. All graphs are plotted for 16
quarters. Output in the model (top-right) is the log-deviation from steady state in percentage points. Inflation in the model
(middle-right) is expressed in annualized percentage points, deviation from steady state value of 1.6%. The interest rate in the
model (bottom-right) is the annualized level of the nominal interest rate in percentage points (the horizontal line is its steady
state value). Hysteresis targeting rule is implemented by adding an additional term called the hysteresis with a coefficient of
0.5. Hysteresis is defined as sum of all endogenous growth rate deviations induced by history of shocks at time t.

Figure I.13 compares the evolution of output, inflation and interest rate under the above interest rate rule

with φh = 0.5 (Hysteresis targeting) to rule with φh = 0 (Standard Taylor rule). We only plot the figures for
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the case of % = 1.07. The results are similar in the case of % = 3.08, although the permanent output shortfall

is significantly smaller in that setting. Output falls by only 0.3% under hysteresis targeting compared to

the 2.6% drop under Taylor rule. Inflation and federal funds rate are positive (in contrast to Taylor rule).

An explicit commitment to targeting permanent output shortfalls creates inflationary expectations, which

lowers the natural interest rate. Higher expected inflation provides more room for the central bank to offset

declines in natural interest rates, as the central bank in this exercise has the power to reduce the impact of

the shock by lowering the nominal interest rate. This example illustrates that the hysteresis bias embedded

in a standard Taylor rule has quantitatively significant implications for the permanent level of output.

Appendix J. Derivation and details for the medium scale DSGE
model

We follow Howitt and Aghion (1998) and Aghion and Howitt (2008) in introducing capital in the endogenous
growth framework. We however extend our model to allow for investment adjustment costs in sync with
the New Keynesian literature following (Christiano et al., 2005), Smets and Wouters (2007) and Justiniano
et al. (2013). The new ingredients are (i) a monopolistically competitive retail sector that sets prices in
a staggered fashion, (ii) endogenous capital accumulation by households subject to investment adjustment
costs, (iii) habit formation in consumption, (iv) variable capital utilization rate, and (v) partial indexation
of prices and wages to the respective lagged inflation rates. We discuss these in turn:

Appendix J.1. Monopolistically Competitive Retailers

There is a continuum of monopolistically competitive retailers that sell the final good Yt(k). These goods
can be aggregated into a Dixit-Stiglitz composite Yt as follows:

Yt =

[∫ 1

0

Yt(k)
1

1+λp,t dk

]1+λp,t

where λp,t > 0 is the (time-varying) price markup. We assume that λp,t follows the exogenous ARMA
process:

log λp,t = (1− ρp) log λp + ρp log λp,t−1 + εpt − µpε
p
t−1; εpt ∼ N(0, σp)

Each retailer k purchases one unit of intermediate good composite Yt(k,m) at a given price of PMt to package
it into one unit of final good and is assumed to set prices on a staggered basis following Calvo (1983). With
probability (1− θp), a retailer gets to reset its price. It solves the following problem:

max
Pt(k)

Et
∞∑
s=0

(βθp)
sQt,t+s

[
Pt(k)Πt,t+s − PMt+s

]
Yt+s(k)

subject to demand for its product

Yt+s(k) =

(
Pt(k)Πt,t+s

Pt+s

)− 1+λp,t+s
λp,t+s

where the stochastic discount factor period t+ s is given by:

Qt,t+s = β
Λt+s
Λt

Pt
Pt+s
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where Λt is the marginal utility of consumption defined later and

Πt,t+s ≡
s∏
b=1

(
π1−ιp
ss π

ιp
t+b−1

)
is the automatic adjustment that firms make to their price when they do not get to reset them, ιp ∈ (0, 1)

is the indexation coefficient and πss is the steady state price inflation rate. Let P̃t be the reset price at time
t. The first order condition is :

Et
∞∑
s=0

(βθp)
sQt,t+s

[
P̃tΠt,t+s − (1 + λp,t+s)P

M
t+s

]
Yt+s(k) = 0

The law of motion of the aggregate price index Pt is given by:

P
1

λp,t

t = (1− θp)(P̃t)
1

λp,t + θp
(
π
ιp
t−1π

1−ιp
ss Pt−1

) 1
λp,t

Appendix J.2. Perfectly Competitive Composite Good Production

Each of the intermediate good composites is produced by a perfectly competitive firm that uses a CES
composite of labor and secondary intermediate goods.† As a result, all intermediate good firms are identical
and we omit the subscripts (k,m) and simply denote the intermediate output at Y mt .

Y mt = MtL
1−α
t

∫ 1

0

Aitx
α
itdi,

where each xit is the flow of intermediate product i used at time t, and the productivity parameter Ait
reflects the quality of that product and Mt is the aggregate (stationary) productivity shock which follows
the process:

logMt = (1− ρm) logMt + ρm logMt−1 + εmt ; εmt ∼ N(0, σm)

The composite good producer’s maximization problem is is as follows

max
Lt,{xit}i∈[0,1]

{
Pmt MtL

1−α
t

∫ 1

0

Aitx
α
itdi−WtLt −

∫ 1

0

pitxitdi

}
Solving this gives the (inverse) factor demands:

pit = αPmt MtL
1−α
t Aitx

α−1
it (J.1)

Wt = (1− α)Pmt
Y mt
Lt

(J.2)

Appendix J.3. Monopolist Intermediate Good Producer

Intermediate good producers are monopolists and use capital to produce one unit of intermediate good.
Following Howitt and Aghion (1998), we assume the following production function for the intermediate
good:

xit =
Kit

Ait

†Such a convoluted market structure is assumed to introduce price -rigidity in a staggered fashion.
Basically, there is a single consumption good that is produced by a perfectly competitive firm, but is retailed
by monopolistically competitive retailers in different packaging.
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The intermediate monopolistic firm sets prices flexibly every period in order to maximize profits:.

max
pit

(1− τpt )pitxit −RKt Kit

subject to the demand for the intermediate good (eq J.1). τpt is the sales tax/subsidy imposed on the
monopolist’s price. Further, we assume that there is a competitive fringe in every sector that faces a
marginal cost of γ1−αAitR

K
t , where γ is the step-size of innovation, discussed in following subsection. As

a result, the intermediate monopolist cannot charge a price higher than pit = χAitR
K
t . In equilibrium, the

monopolist charges a price given by:

pit = ζAitR
K
t ≡ min

(
γ1−α,

1

(1− τp)α

)
AitR

K
t

This yields

xit =
Kt

At
=

(
α
ζ P

m
t MtL

1−α
t

RKt

) 1
1−α

, RKt =
α

ζ

Pmt Y
m
t

Kt

and profits are given by Γt(Ait) = (ζ − 1)αζ
Pmt Y

m
t Ait
At

. Define aggregate productivity At ≡
∫ 1

0
Aitdi. Substi-

tuting for the intermediate goods’ production levels, we can rewrite the production function purely in the
form of aggregates:

Y mt = Mt(AtLt)
1−αKα

t (J.3)

Define kt = Kt
At

and ymt =
Ymt
At

= Mtk
α
t l

1−α
t .

Appendix J.4. Innovation and research arbitrage

There is a single entrepreneur in each sector who spends final output in research . The entrepreneur at time
t decides her research inputs and if successful, she gets to be the intermediate monopolist in the following
period producing goods with productivity Ait+1 = γAit . She is successful with probability Ωtzit , where Ωt
is the exogenous shock to innovation success and and is assumed to follow the following process:

log Ωt = ρΩ log Ωt−1 + εΩt ; εΩt ∼ N(0, σΩ)

zit is the innovation intensity chosen by the entrepreneur. In order to achieve this, she needs to spend the
amount of final good†

Rit = c(zit)Ait + Sr
(

Rt
(1 + gss)Rt−1

)
At

in research, where c(zt) ≡ δz%t ; % > 1. Sr(·) denote adjustment costs in R&D that the entrepreneur takes
as given. We assume Sr(1) = 0 and ∂Sr

∂R (1) > 0. These adjustment costs generate a hump shape response
for R&D expenditure. These costs are similar to those considered by Aghion et al. (2010) since these enter
additively and do not affect the first-order condition for entrepreneur. Entrepreneur maximizes the net
expected profits from investing in research :

max
zit∈[0,1]

{ΩtzitQt,t+1Vt+1(γAit)− (1− τ rt )PtRit}

where the lifetime discounted profits are given by the value function:

Vt(Ait) = Γt(Ait) + (1− Ωtzit)EtQt,t+1Vt+1(Ait)

†This could further be generalized to allow for adoption probability for this entrepreneur’s technology
in the next period, which would better match the data. Secondly, we can also add a financial frictions
constraint to get more action.
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Because of the linearity of production function, as we showed above in the Appendix A, the Value function
is also linear in productivity. Writing the normalized Value function as Ṽit ≡ Vit

PtAit
and focusing on the

symmetric equilibrium, we solve for interior solution (where zt > 0):

%z%−1
t = β

Λt+1

Λt

γΩtṼt+1

(1− τ rt )δ
(J.4)

Total amount of the final good used in research and innovation:

Rt =

∫ 1

0

Ritdi =

(
c(zt) + Sr

(
Rt

(1 + gss)Rt−1

))
At

Appendix J.5. Households & Wage Setting

Appendix J.5.1. Households

Each household supplies differentiated labor indexed by j. Household j chooses consumption Ct, risk-free
nominal bonds Bt, investment It and capital utilization ut to maximize the utility function:

EtΣ∞s=0β
j

[
log(Ct+s − hCt+s−1)− ω

1 + ν
Lt+s(j)

1+ν + ξt
Bt+1

Pt

]
where h is the degree of habit formation, ν > 0 is the inverse Frisch elasticity of labor supply, ω > 0 is a
parameter that pins down the steady-state level of hours, the discount factor β satisfies 0 < β < 1 and ξt is
the liquidity demand shock. We assume that in the steady state ξ = 0 .We assume perfect consumption risk
sharing across the households. As a result, household’s budget constraint in period t is given by

PtCt + PtIt +Bt+1 = Bt(1 + it) +BSt (j) + (1 + τw)WtLt(j) + Γt + Tt +RKt utK
u
t − Pta(ut)K

u
t (J.5)

where It is investment, BSt (j) is the net cash-flow from household j’s portfolio of state-contingent securities.
Labor income WtLt(j) is subsidized at a fixed rate τw. Households own an equal share of all firms, and
thus receive Γt dividends from profits. Finally, each household receives a lump-sum government transfer Tt.
Since households own the capital and choose the utilization rate, the amount of effective capital that the
households rent to the firms at nominal rate RKt is :

Kt = utK
u
t

The (nominal) cost of capital utilization is Pta(ut) per unit of physical capital. As in the literature (SW
2007, JPT 2010) we assume a(1) = 0 in the steady state and a′′ > 0. Following CEE 2005, we assume
investment adjustment costs in the production of capital. Law of motion for capital is as follows:

Ku
t+1 = υt

[
1− S

(
It

(1 + gss)It−1

)]
It + (1− δk)Ku

t

where gss is the steady state growth rate of productivity, εit is a shock to the relative price of investment
and In the steady state S(1) = S′(1) = 0, S′′ > 0. JPT consider this as shock to marginal efficiency of
investment (MEI) and is assumed to follow the following process:

log υt = ρυ log υt−1 + ευt ; ευt ∼ N(0, συ)

Utility maximization delivers the first order condition linking the inter-temporal consumption smoothing to
the marginal utility of holding the risk-free bond

1 = βEt
[

Λt+1

Λt
(1 + it)

Pt
Pt+1

]
+ Λ−1

t ξt (J.6)
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The stochastic discount factor in period t+ 1 is given by:

Qt,t+1 = β
Λt+1

Λt

Pt
Pt+1

where Λt is the marginal utility of consumption given by:

Λt =
1

Ct − hCt−1
− hβ

Ct+1 − hCt

The household does not choose hours directly. Rather each type of worker is represented by a wage
union who sets wages on a staggered basis. Consequently the household supplies labor at the posted wages
as demanded by firms.

We introduce capital accumulation through households. Solving household problem for investment and
capital yields the Euler condition for capital:

qt = βEt
[

Λt+1

Λt

(
RKt+1

Pt+1
ut+1 − a(ut+1) + qt+1(1− δk)

)]
where the (relative) price of installed capital qt is given by

qtυt

[
1− S

(
It

(1 + gss)It−1

)
− S′

(
It

(1 + gss)It−1

)
It

(1 + gss)It−1

]
+β

Λt+1

Λt
qt+1υt+1

1

(1 + gss)

(
It+1

It

)2

S′
(

It+1

(1 + gss)It

)
= 1

Choice of capital utilization rate yields:

RKt
Pt

= a′(ut)

Appendix J.5.2. Wage Setting

Wage Setting follows Erceg et al. (2000) and is relatively standard. Perfectly competitive labor agencies
combine j type labor services into a homogeneous labor composite Lt according to a Dixit-Stiglitz aggrega-
tion:

Lt =

[∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t

where λw,t > 0 is the (time-varying) nominal wage markup. We assume that λw,t follows the exogenous
ARMA process:

log λw,t = (1− ρw) log λw + ρw log λw,t−1 + εwt − µwεwt−1; εwt ∼ N(0, σw)

Labor unions representing workers of type j set wages on a staggered basis following Calvo (1983), taking
given the demand for their specific labor input:

Lt(j) =

(
Wt(j)

Wt

)− 1+λw,t
λw,t

Lt, where Wt =

[∫ 1

0

Wt(j)
−1
λw,t dj

]−λw,t
In particular, with probability 1 − θ, the type-j union is allowed to re-optimize its wage contract and it
chooses W̃ to minimize the disutility of working for laborer of type j, taking into account the probability
that it will not get to reset wage in the future. If a union is not allowed to optimize its wage rate, it adjusts
wage at steady state wage inflation Π̄w rate. Workers supply whatever labor is demanded at the posted
wage. The first order condition for this problem is given by:

Et
∞∑
s=0

(βθw)
s

Λt+s

[
(1 + τWt )W̃Πw

t,t+s − (1 + λw,t)ω
Lνt+s(j)

Λt+s

]
Lt+s(j) = 0 (J.7)
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where

Πw
t,t+s ≡

s∏
b=1

(πwss)

By the law of large numbers, the probability of changing the wage corresponds to the fraction of types who
actually change their wage. Consequently, the nominal wage evolves according to:

W
1

λw,t

t = (1− θw)(W̃t)
1

λw,t + θw (πwssWt−1)
1

λw,t

where the nominal wage inflation and price inflation are related to each other :

πwt =
Wt

Wt−1
=

wt
wt−1

1

πt

1

1 + gt

where πt ≡ Pt
Pt−1

is the inflation rate, wt ≡ Wt

PtAt
is the productivity adjusted real wage and gt is the

(endogenous) productivity growth rate.

Appendix J.6. TFP and growth rate

Aggregate (endogenous) productivity follows:

At =

∫ 1

0

Aitdi =

∫ 1

0

[Ωt−1zt−1γAit−1 + (1− Ωt−1zt−1)Ait−1]di = At−1 + Ωt−1zt−1(γ − 1)At−1

The growth rate of the productivity :

gt =
At −At−1

At−1
= Ωt−1zt−1(γ − 1)

Measured TFP (total factor productivity) is given by product of stationary exogenous component and the
non-stationary endogenous component :

TFPt = Mt ×At

Appendix J.7. Government

The central bank follows a Taylor rule in setting the nominal interest rate. It responds to deviations in
inflation, output and output growth rate from time-t natural allocations.

1 + it
1 + iss

=

(
πt
πss

)φπ ( Yt

Y f,tt

)φy
εmpt

where iss is the steady state nominal interest rate, Y f,tt is the time-t natural output, and εmpt ∼ N(0, σr) is
an AR(1) monetary policy shock with persistence ρR.

We assume government balances budget every period:

PtTt = τp
∫ 1

0

pitxitdi+ τ rt PtRt + τwWtLt + PtGt

where Gt is the government spending, which is determined exogenously as as a fraction of GDP

Gt =

(
1− 1

λgt

)
Yt

where the government spending shock follows the process:

log λgt = (1− ρg)λg + ρg log λgt−1 + εgt ; εgt ∼ N(0, σg)
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Appendix J.8. Market Clearing

Yt = Ct + It +Rt + a(ut)K
u
t +Gt

Appendix J.9. Stationarizing the system

We normalize the following variables:
yt = Yt/At

ymt = Y mt /At

ct = Ct/At

kt = Kt/At

kut = Ku
t /At−1

It = It/At capital investment

Rt = Rt/At R&D investment

Gt = Gt/At Govt Spending

wt = Wt/(AtPt)

pmt = Pmt /Pt

rkt = Rkt /Pt

λt = ΛtAt

ξ′t = ξtAt

Γ̃t ≡
Γt
PtAt

Further note that because of the linearity assumption in the production of final goods, the Value function is
a linear function in productivity with which an entrepreneur enters the sector:

Ṽt ≡
Vt(Ait)

PtAit
= Γ̃t + (1− zt)Et

λt+1

λt
Ṽt+1

where Ṽ is normalized by the productivity with which the entrepreneur enters the sector.

Appendix J.10. Matching the Great Recession: II

In the main text, we choose a conservative persistence for the liquidity demand shock such that the ZLB
is expected to bind for six quarters. Here, we choose a persistence such that the expected duration of the
ZLB is 12 quarters, i.e 3 years. We show that the model is better able to match the empirical moments.
Figure J.14 plots the evolution of Output, Inflation and Federal funds Rate from 2008Q3 till 2012Q3.
The first two columns on the left reproduce the results reported in Figure I.11 for comparison. Column
3 (rightmost) reports results from the model with a more persistent liquidity demand shock. The shock
is calibrated such that convenience yield rises by 180 bps on impact. The nominal interest rate hits the
ZLB under the Taylor rule and stays there for 12 quarters. Output drops by 7.30%, and Inflation drops
by 1.58%.Contrast this with the data where output drops by 8.6% and Inflation drops by 2%. Thus, the
liquidity demand shock can explain 84% of the drop in output and 79% of the observed drop in inflation.
Figure J.15 plots consumption, and investment under a more persistent shock. In the data, consumption
and capital investment drop by 4.34% and 27% respectively. In the model with more persistent liquidity
demand shock, the drop in consumption and capital investment are 2.88% and 18.40% respectively. Thus, the
liquidity demand shock can explain 66% of the observed drop in consumption and 68% of the observed drop
in investment. Importantly, the model produces a faster recovery in investment as observed in the data,
while consumption recovers sluggishly. As noted in the main text, the model generates counterfactually
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high responsiveness of R&D investment. This persistent liquidity demand shock reduces long-run output by
2.50%, through a slowdown in endogenous productivity growth.

Figure J.14: Response of Output, Inflation, and the Nominal Interest Rate to the Liquidity
Shock

Data Model with persis = 0.938Model with persis = 0.955
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Notes: The figure compares the evolution of output, inflation, and the nominal interest rate in the data (left column) and in the
two variants of the model in response to the calibrated liquidity shock (right columns). The first two columns plot the data and
model with exogenous patent loss as in Figure I.11. Column 3 plots these variables in response to a more persistent liquidity
demand shock. The data start in 2008Q3. Both data and model are plotted for 16 quarters. Output in the data (top-left) is
the sum of consumption and investment, in percentage log-deviations from a linear trend estimated from 2000Q1 to 2007Q4,
and is normalized to zero in 2008Q3. Inflation in the data (middle-left) is the annualized quarterly inflation rate of the GDP
deflator minus 1.6%. Value of 1.6% is chosen for the model to hit a steady state nominal interest rate of 4%. The interest rate
in the data (bottom-left) is the annualized effective Federal Funds Rate. Output in the model (top-right) is the log-deviation
from steady state in percentage points. Inflation in the model (middle-right) is expressed in annualized percentage points. The
interest rate in the model (bottom-right) is the annualized level of the nominal interest rate in percentage points (the horizontal
line is its steady state value).
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Figure J.15: Response of Consumption, Investment, R&D Investment, and Convenience Yield
to the Liquidity Shock with 12 quarters expected ZLB duration
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Note: The figure compares the evolution of consumption, investment, R&D investment, and convenience yield in the data (left
column) and in the model in response to the calibrated liquidity shock (right column). Column 1 plots the data counterpart of
these variables as reported in Figure I.12. Column 2 plots the model evolution under a more persistent liquidity demand shock.
The ZLB binds for 12 quarters. The data start in 2008Q3. Both data and model are plotted for 16 quarters. Consumption
in the data (top-left) is total consumption minus durable consumption. Investment in the data (top-middle-left) is investment
plus durable consumption minus Intellectual Property Investment. R&D Investment in the data (bottom-middle-left) is the
Intellectual Property Investment. These three variables are expressed in percentage log-deviations from a linear trend estimated
from 2000Q1 to 2007Q4, and are normalized to zero in 2008Q3. The convenience yield in the data (bottom-left) is in annualized
basis points (produced by (Del Negro et al., 2017)). Consumption (top-right), investment (top-middle-right), and R&D invest-
ment (bottom-middle-right) in the model are log-deviations from steady state in percentage points. The convenience yield in
the model (bottom-right) is the annualized absolute deviation from steady state expressed in basis points.
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