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1 Introduction

Short-term interest rate collapsed to zero in most of the advanced world following the crisis

of 2008, which limited central banks’ ability to stimulate spending. This shifted the focus of

policymakers and researchers to fiscal policy. Some striking results emerge from a class of New

Keynesian models, typically using the Calvo (1983) model of price frictions, see e.g. Eggertsson

(2011), Christiano, Eichenbaum and Rebelo (2011), and Woodford (2011).1 Once the zero bound

on the short term nominal interest rate (ZLB) is binding, and if the monetary authority cannot

commit to future monetary policy, the multiplier of government spending is always larger than

one and in some cases much larger than one. Another noteworthy result, see e.g. Eggertsson

(2010), is that supply side policies such as labor tax cuts are contractionary at the ZLB (also

known as the paradox of toil). While the former result appeared to resurrect old Keynesian

orthodoxy, the latter one goes against much of the conventional wisdom in macroeconomics.

There has been growing skepticism about the accuracy of these results in the economic profes-

sion. The work cited above relies on log-linear approximations of all equilibrium conditions ex-

cept it explicitly keeps track of the constraint that the short term nominal interest rate is bounded

by zero.2 Boneva, Braun and Waki (2016) report results from a non-linear calibration of a model

with quadratic pricing frictions (based on Rotemberg 1982). They find that government spend-

ing multipliers are small and orthodox at the ZLB, while the paradox of toil disappears. These

results are of great interest, since the Calvo and the Rotemberg model are equivalent in their

log-linear approximation. Fernández-Villaverde, Gordon, Guerrón-Quintana and Rubio-Ramirez

(2015) study the non-linear Calvo model and emphasize the importance of non-linear features

brought about due to the ZLB. A key contribution of their work is to consider richer structure for

uncertainty than the previous literature, which clarifies several important non-linear properties

implied by the ZLB that the previous literature did not capture. Miao and Ngo (2016) compare

the fully non-linear Calvo model with the Rotemberg pricing model under uncertainty and docu-

ment that these two models behave very differently in a non-linear setting. Taken together, these

papers raise doubts about the accuracy of the existing literature that relies on log-linearizations,

about the effect of fiscal policy at the ZLB.

One difficulty in making an overall assessment about the accuracy of the log-linearization

in papers such as Eggertsson (2011), Christiano, Eichenbaum and Rebelo (2011), and Woodford

(2011) on the basis of the work cited above, is that it either uses a different form of uncertainty,

a different price mechanism (Calvo vs Rotemberg) or some combination of the two. This paper

1The first paper to formally study fiscal policy in the New Keynesian model subject to the ZLB is Eggertsson
(2001).

2It is not important if the bound is exactly zero, or slightly positive or negative. The key is that there is a bound.

1



fills this gap.

The main finding of this paper is that the difference between solving the fully non-linear

model or using a log-linear approximation (but taking account of the non-linearity created by

the ZLB) is small in the numerical experiments but with important caveats. The exact non-linear

Calvo model is solved and compared to a log-linear approximation, using the same form of

uncertainty as in Eggertsson (2011), Christiano, Eichenbaum and Rebelo (2011), and Woodford

(2011), i.e. a two state Markov process with an absorbing state. Moreover, exactly the same

procedure is used to parameterize the size of the shocks and parameters in the log-linear and the

non-linear solutions of the model.

Table 1: Multipliers at the ZLB

Calibrations GD in Non-Linear GD in Linear GR in Non Linear GR in Linear
∂Ŷ
∂G 2.4166 2.2168 1.2905 1.1828
∂Ŷ

∂τw 1.5889 0.9953 0.1198 0.1499

The bottomline is summarized in Table 1 that considers two benchmark parameterizations.

One numerical experiment matches a recession of the order of the Great Recession (GR) (an

output gap of -10 percent and a two percent fall in inflation). The other experiment matches

a large contraction of the order of the Great Depression (GD) (30 percent output gap and a

10 percent drop in inflation). As the table reveals, there is little difference between the log-

linear approximation of the model and the exact non-linear solution: the government spending

multiplier is above one in the GR scenario and above 2 in the GD scenario as in Eggertsson

(2011). In addition, the paradox of toil does not depend on the log-linear approximation, it

occurs in either setting.

Overall, the results suggest that the log-linear approximation is not driving the often cited

results of fiscal policy in New Keynesian model at the ZLB. The key non-linearity to keep track

of is the ZLB, while the remainder of the model appears to be well approximated with log-linear

approximation, at least under the assumption of a two state Markov process with an absorbing

state. This does not, however, imply that there are no important non-linearities created by richer

stochastic structure for the shocks at the ZLB, as documented by Erceg and Lindé (2014) and

Fernández-Villaverde et al. (2015).

The assumption that uncertainty is captured by a two state Markov process with an absorb-

ing state implies that the model can be collapsed into only two equations (aggregate demand

and aggregate supply) in two unknowns (inflation and output). This makes the computation

of the equilibrium in the non-linear model simple. An important assumption that allows this

characterization is industry-specific labor markets as in Eggertsson and Woodford (2003). This
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assumption eliminates price dispersion as a state variable.3 Fernández-Villaverde et al. (2015)

and Miao and Ngo (2016), however, assume a common labor market from which all firms must

hire, in which case price dispersion is a state variable of the non-linear model. Consequently

a simple two equation characterization of the form presented in this paper is not possible (see

Woodford (2003) for a general discussion of the importance of this assumption in New Keynesian

models).

Another important assumption maintained in this paper is that the fiscal policy intervention

is perfectly correlated with the shock that drives the economy to the ZLB, i.e. the fiscal stimulus

is in response to the recession. As emphasized in Eggertsson (2011), fiscal policy has a very

different effect if it follows a different stochastic process than the shock that drives the economy

to the ZLB. To take an extreme example, Eggertsson (2011) characterizes analytically when the

government increases spending permanently at the ZLB. In this case the fiscal multiplier changes

signs and becomes negative. Being explicit about the correlation of government spending with

the underlying ZLB shock process is an important consideration to reconcile results reported in

the literature that may sometime seem to conflict each other.

Finally, the main focus in this paper is the analysis of ZLB equilibrium that arises due to

real shocks that lead to the ZLB being binding. The paper does not analyze equilibria that arise

due to self-fulfilling expectations, but these type of equilibria can arise whether or not the model

is log-linearized. There is a rich literature exploring this topic, an important recent contribution

includes Christiano, Eichenbaum and Johannsen (2018).4 Christiano, Eichenbaum and Johannsen

(2018)’s results suggest that the equilibria that arise due to self-fulfilling expectations can be ruled

out via stability-under-learning criteria.5

While the log-linearization approximates the non-linear model at the ZLB quite well, when

an equilibrium exists, the non-linear variation of the model also offers some additional insights

that are briefly commented on below where the organization of the paper is outlined, with more

details to follow.

Section 2 states the non-linear Calvo model. Section 2.1 clarifies the role of industry specific

labor markets. While the framework is standard, it is useful to clarify why price dispersion does

3This modeling assumption is relatively standard in the New Keynesian literature, see e.g. Woodford (2003) for
the textbook treatment. However, as stressed by Benigno and Woodford (2004), price dispersion is needed for welfare
analysis and hence will feature as a state variable in the analysis of optimal monetary policy.

4Aruoba, Cuba-Borda and Schorfheide (2017), Benhabib, Schmitt-Grohé and Uribe (2001), Christiano and Eichen-
baum (2012), Mertens and Ravn (2014), and Schmitt-Grohé and Uribe (2017), are some examples of important contri-
butions in this literature. We do show, however, that the non-linear model exhibits multiple equilibria of a different
form when the zero lower bound is binding, but we restrict attention to the locally determinate equilibrium, which
allows us to do comparative statics and address questions related to multipliers.

5While their main focus is on ruling out multiplicity they also report numerical results on government spending
multipliers in a Calvo model with common factor market for labor. Their numerical experiments deliver similar
results across the linear and non-linear model. This suggests that the assumption of industry specific labor market,
while helpful for tractability, is not driving the results reported in this paper.
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not appear in the definition of equilibrium. Section 2.2 summarizes the non-linear model with

two equations in two unknown, i.e. output and inflation, given fiscal policy and an exogenous

shock that follows a two state Markov process. This section shows that the non-linear model

typically has two solutions, the “regular ZLB” which is similar to the one analyzed in the log-

linearized models, and a hyper-deflation equilibrium. As already noted, the paper does not

consider the case in which the ZLB is binding due to self-fulfilling expectations, which represents

a third possibility. The hyper-deflation equilibrium appears less interesting than the “regular

ZLB” as it is shown not to pass standard equilibria selection criteria like local-determinacy and

e-learnability, in which case comparative statics are less meaningful.6 Accordingly the paper

focuses on the “regular ZLB" equilibria and leaves the study of indeterminate hyper-deflation

equilibrium to future work.

Section 3 documents, in line with the literature that relies on log-linearization, that the drop

in output is increasing in the persistence of the shock. However, while at some critical value

the equilibrium in the log-linearized model “explodes” and then becomes indeterminate, the

analog in the non-linear model is a finite drop in output which is followed by a non-existence of

equilibria. This gives a new rationale for the relative slope condition of the aggregate demand

and aggregate supply, discussed in Eggertsson (2011). In the non-linear solution, the model tends

to converge to a finite limit as the prices are made increasingly flexible or the ZLB shock is made

persistent.

Section 4 compares the quantitative predictions of the log-linear approximation and the exact

solution, i.e., what underlies Table 1 and explains the way in which the model is parameter-

ized. Finally, section 5 clarifies why the non-linear Calvo model behaves so differently from

the non-linear Rotemberg model documented in Boneva, Braun and Waki (2016) and Miao and

Ngo (2016).7 The key reason is that in the Rotemberg model, large deflation implies very large re-

source cost of price adjustment. The section documents that the policy disagreement between the

Calvo and the Rotemberg model is an artifact of a particular way of accounting for the adjustment

costs The resource costs of price changes become implausibly large very quickly (over 100% of

GDP for 10% deflation) suggesting that the model with Rotemberg price adjustment costs cannot

generate the Great Depression. However, there exist suitable modifications to this model, often

applied in the literature, that can overcome this counterfactural policy disagreement. Motivated

6When an equilibrium is indeterminate in the model it means that there is an infinite number of bounded equi-
libria that solve the equations of the model in the vicinity of that equilibrium. This means that comparative statics are
not meaningful absent further assumptions, for it becomes arbitrary as to which equilibria to select in response to an
exogenous disturbance.

7Some of the equilibria analyzed by Boneva, Braun and Waki (2016) in the Rotemberg model are not e-learnable.
We do not consider those equilibria. Our focus is only on the policy disagreements generated by the locally unique
equilibria in the Rotemberg model since the comparative statics are defined here without the need for additional
assumptions.
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by Rotemberg’s original article, this section concludes by suggesting an alternative interpretation

of these costs so that these costs do not show up directly in the resource constraint.

2 Non-linear Calvo Model at the ZLB

2.1 Basic Model

This section briefly outlines the textbook (Woodford, 2003) New Keynesian model highlighting

the relevance of industry specific market for wages. It concludes with a proposition summarizing

that the model does not have any endogenous state variable, provided that monetary policy is

purely forward looking. The representative household maximizes

E0

∞

∑
t=0

βtξt

[
C1−σ̃−1

t
1− σ̃−1 − λ

∫ 1
0 nt(i)1+ωdi

1 + ω

]

where Ct is a Dixit-Stiglitz aggregate

Ct =

[∫ 1

0
ct(i)

θ−1
θ di

] θ
θ−1

with θ > 1 , nt(i) is the quantity of labor supplied of type i, ω > 0 is the inverse of the Frisch

elasticity of labor, λ a normalizing constant and 0 < β < 1 the discount factor.

The household demand for good i is

ct(i) = Ct

(
pt(i)

Pt

)−θ

where pt(i) is the price of good i, Pt is the price level given by

Pt ≡
[∫ 1

0
pt(i)1−θdi

] 1
1−θ

so that PtCt =
∫ 1

0 pt(i)ct(i)di.

The households trade in one-period risk-free nominal bonds Bt that pay 1 + it in the next

period where it is the nominal interest rate.8 The period flow budget constraint is:

∫ 1

0
pt(i)ct(i)di + Bt ≤ (1 + it−1)Bt−1 + (1− τw

t )
∫ 1

0
wt(i)nt(i)di +

∫ 1

0
Zt(i)di− Tt,

8It is not important here whether the markets are assumed to be complete or if the only asset is a one period risk-
free nominal bond, whose existence is needed to price the nominal interest rate which is the instrument of monetary
policy.

5



where wt(i) is the nominal wage rate in the ith industry in the economy, Zt(i) is the nominal

profits from the sale of good i, Tt are the lump sum taxes and τw
t is the payroll tax.

Every good i is produced by a monopolistically competitive firm. The production function of

the firm is assumed to be linear in industry-specific-labor:

yt(i) = nt(i)

All production is consumed, so that Ct = Yt, and each firm faces the demand function for its

production given by yt(i) = Yt(
pt(i)

Pt
)−θ .

The key assumption in Woodford (2003) is that the labor employed by each monopolistically

competitive firm corresponds to a particular type of the labor variety supplied by the households.

The firm takes this wage rate as given. The firm’s period profit function is then given by

Πt(i) = pt(i)
(

pt(i)
Pt

)−θ

Yt − wI
t

(
pt(i)

Pt

)−θ

Yt.

Woodford (2003) suggests that wI
t should be interpreted as an industry specific wage for good

variety i. This wage rate can then be related to the price level of good i in that industry via the

first order labor condition of the household as wI
t

Pt
=

λnt(i)ωCσ̃−1
t

(1−τw)
=

λYω
t (

pI
t

Pt
)−θωCσ̃−1

t

(1−τw)
where pI

t is the

industry-wide common price. Accordingly the period profit function of a firm producing good

variety i can be written as Π
(

pt(i), pI
t , Pt, Yt

)
.9

Using the Calvo (1983) price-setting assumption, a fraction 0 < α < 1 of good prices remain

unchanged in any period. With probability 1− α, a firm is selected at random (independent of

the time of last adjustment) to adjust its good’s price. Let p∗t be the optimal reset price in period

t. A supplier that changes its price in period t chooses its new price pt(i) to maximize present

discounted value of its profits, taking as given the industry level wage wI
t which is expressed in

terms of pI
t :

Et

{
∞

∑
j=t

αj−tQt,jΠ̃
(

pt(i), pI
j , Pj, Yj

)}

where Qt,t+1 is the stochastic discount factor in period t + 1 with respect to t. The first order

9As noted by Woodford (2003), even if industry-specific labor markets are assumed, this need not imply that firms
have monopsony power. Instead it can be assumed that each firm is a wage-taker as noted above. See page 148 in
chapter 3 in Woodford (2003) for an elaboration on this point but where a more general notation is also developed to
make this point clear: In short, assume a double continuum of differentiated goods, indexed by (I, j), with an elasticity
of substitution of θ between any two goods. Then all goods with the same index I (goods in the same "industry")
are assumed to change their prices at the same time, all using the same type I labor. Gertler and Leahy (2008) use
a similar structure to this double continuum, except they allow for idiosyncratic risk across firms within an ’island’
(industry).
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condition for optimal price setting is:

Et

{
∞

∑
j=t

αj−tQt,jΠ̃1

(
p∗t , pI

j , Pj, Yj

)}
= 0

Following (Woodford, 2003) all firms in industry I reset the price in period t so this becomes:

Et

{
∞

∑
j=t

αj−tQt,jΠ̃1
(

p∗t , p∗t , Pj, Yj
)}

= 0

This gives the closed form solution :

p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

where Ft and Kt are aggregate variables given by:

Ft ≡ Et

∞

∑
j=t

(αβ)j−tξ j(1− τw
j )C

−σ̃−1

j Yj

(
Pj

Pt

)θ−1

Kt ≡ Et

∞

∑
j=t

(αβ)j−t θ

θ − 1
λξ jY1+ω

j

(
Pj

Pt

)θ(1+ω)

To summarize, the following equations define the equilibria

1. Euler Equation

1 = β(1 + it)Et

[(
Ct+1

Ct

)−1/σ̃ ξt+1

ξt

1
Πt+1

]
(1)

2. NK Phillips Curve

Kt =
θ

θ − 1
λξtY1+ω

t + αβEt

[
Πθ(1+ω)

t+1 Kt+1

]
(2)

Ft = ξt(1− τw
t )C−

1
σ̃

t Yt + αβEt

[
Π(θ−1)

t+1 Ft+1

]
(3)

Kt

Ft
=

(
1− αΠθ−1

t
1− α

) 1+ωθ
1−θ

(4)

3. Resource Constraint

Yt = Ct + Gt (5)
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Finally, price dispersion at time t is defined as

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ(1+ω)

di (6)

To summarize:

Proposition 1. In a representative agent New Keynesian economy with industry-specific labor markets

and Calvo price setting, an equilibrium is defined as a collection of stochastic processes for {Ct, Yt, Πt, Kt, Ft

} that solve eqns {1 - 5} given a path for {Gt, τw
t } determined by fiscal policy, a path for {it} determined by

monetary policy and a path for {ξt}. Price dispersion defined by eqn 6 does not feature as a state variable

and is redundant in the determination of the equilibrium as long as it does not enter the government’s

policy (central bank and treasury’s policy) choices.

The reason price dispersion does not enter the determination of the endogenous variables

is pointed out in Woodford (2003). The benchmark New Keynesian model assumes industry-

specific labor markets so that the real marginal cost of supplying a given good depends only

on yt(i) and aggregate output Yt. Alternatively in a model in which each firm hires from an

economy-wide labor markets, then the real marginal cost instead depends also on an alterna-

tive measure of aggregate output Xt =
∫ 1

0 yt(i)di which in turn depends upon price dispersion

(Yun, 1996).10 Using industry-specific labor markets instead of economy-wide factor markets has

important implications for real rigidities in the economy as stressed in Woodford (2003). It also

allows for the analysis of the model without price dispersion as a state variable, as long as the

government policy does not depend on price dispersion. For welfare evaluation, however, price

dispersion is relevant, for it enters social welfare. Accordingly, optimal monetary policy will in

general take price dispersion into account (see Benigno and Woodford 2004). In this paper, how-

ever, policy will be characterized by a strict inflation target without reference to any endogenous

state variable, as in Eggertsson and Woodford (2003).

2.2 Two state Markov Chain, the ZLB and AS and AD equations

Closed form solutions for ‘Aggregate Supply’ and ‘Aggregate Demand’ can now be derived

under the assumption that the exogenous variable can only take on two values. ξt is a two-state

Markov chain with an absorbing state. The long run , as in Eggertsson (2011), is when the shocks

are at the non-stochastic steady state. The long run is an absorbing state. The short run, in

10Compare the intra-temporal condition of the household in the model with industry-specific labor markets with
the economy-wide labor markets. Wt

Pt
depends on Nt in the economy wide labor markets model, and this aggregate

depends on the price dispersion. On the other hand, the factor-market-specificity assumption makes the real wage
independent of this aggregate.
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contrast, is defined by period t ≥ 0 at which time the shock ξS takes on a value below its steady

state value ξL. It is assumed that in each period t < Te when ξt = ξS there is a constant probability

(1− µ) that the shock reverts to its long run steady state value. Te < ∞ is the stochastic (but

finite) time period when the shock is back at the steady state level. So t ≥ Te is defined as the

long run.

The central bank sets an inflation target Πt = 1 whenever it can. If this inflation target

implies negative nominal interest rate, then the central bank sets it = 0 in which case Πt is

endogenously determined.11The analysis only considers the case in which the ZLB is binding

due to fundamental shocks but does not consider the possibility that the ZLB is binding due to

self-fulfilling expectations. Government spending and/or labor taxes can take on any values GS

and τw
S in the short run but return back to steady state in the long run given by GL and τw

L . There

is perfect correlation of the fiscal policy intervention and ξt.12 Long run government spending

GL is calibrated at 0.2 (20% of steady state GDP) and labor taxes τw
L are calibrated at 0.3, as in

Eggertsson (2011) .

The system of equations can be simplified into two equations that determine inflation and

output in the short run. Units are chosen so that in the steady state, i.e the long run, YL = ξL = 1,

implying that λ = ( θ−1
θ )(1− GL)

−σ̃−1
(1− τw

L ). Furthermore, given equations (1)-(5) in the long

run ΠL = YL = 1, 1 + iL = β−1, CL = 1− GL and

KL = FL =
(1− τw

L )(1− GL)
− 1

σ̃

1− αβ
(7)

This allows for an explicit characterization of inflation and output in the short-run.

What makes the model particularly tractable is 1) that it is purely forward looking, and 2) the

assumption of an absorbing steady state. This implies that (1)-(5) can be combined into an AS

and an AD curve that determine ΠS and YS. It is assumed that the shock ξS is large enough so

that the zero bound is binding, i.e., the solution ΠS = 1 implies negative nominal interest rate.

Accordingly, iS = 0.

11We choose to specify policy in this way because the policy specified as a Taylor rule accommodates alternate
equilibria, as demonstrated by Benhabib, Schmitt-Grohé and Uribe (2001). Our policy specification is an equilibrium
selection device where these alternate equilibria do not arise. This particular policy rule may be considered a special
case (φπ → ∞ )of the standard Taylor rule of the form:

it = re
t + φππt + φyY

where the alternate equilibria are ignored. Similarly, our results would be identical if we conducted our analysis with
the standard Taylor rule as long as φπ + φy > 1 and if the self-fulfilling expectations equilibria are ignored. Our
exercise involves a two-state Markov chain, such that the preference shock goes back to zero in the high state. Since
there are no internal propagation mechanisms (persistence in Phillips curve or the Taylor rule), the economy would
switch to a zero inflation steady state even with φπ << ∞.

12As in Eggertsson (2011) we assume that lump-sum taxes adjust to clear the government budget constraint.
Accordingly the evolution of government debt is irrelevant due to Ricardian equivalence.
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1. AD curve: The Euler equation (1) and the Resource Constraint (5) define an AD relationship

in the short run:

YS = GS + (1− GL)

{[
1− βµΠ−1

S

] ξS

(1− µ)β

}σ̃

(8)

2. AS curve: The New-Keynesian Phillips curve (2)-(4) and the resource constraint (5), define

the AS curve in the short run:

θ
θ−1 λξSY1+ω

S + αβ(1− µ)KL

ξS(1− τw
S )(YS − GS)

− 1
σ̃ YS + αβ (1− µ)FL

1− αβµΠ(θ−1)
S

1− αβµΠθ(1+ω)
S

=

(
1− αΠθ−1

S
1− α

) 1+ωθ
1−θ

(9)

where KL and FL are given by (7).

Figure 1: AS-AD representation in the non-linear Calvo

Output drop
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

In
fla

tio
n 

dr
op

-40

-35

-30

-25

-20

-15

-10

-5

0

First equilibrium

Second equilibrium

AS
AD

Figure 1 plots up these two curves.13 Parameters are chosen as in Eggertsson (2011) to deliver

a Great Depression scenario of 30% drop in output and 10% drop in inflation where the two

curves intersect. The parametrization is further discussed in section 4.

The red (solid) line is the Aggregate Demand curve (8) for the case when the zero lower

bound is binding. The dashed blue line is the Aggregate Supply curve (or the New Keynesian

Phillips Curve) given by (9). There curves have two intersections. Moving from right to left, they

are termed the First and the Second Equilibrium respectively.

13These equations are plotted as follows: For a given (fine) grid of numbers for gross inflation, AS and AD are
just equations in one variable (output). Find the values of output that satisfy these equations at the grid points. It
is straightforward for the AD equation. The AS equation is non-linear and so a non-linear optimization routine in
Matlab ’fzero’ is used to find the values of output that satisfy the AS equation (starting from some initial value). A
web appendix on the authors website provides more details on this algorithm and its robustness. In experiment there
has always been found only one positive real value for Y that satisfies the AS equation for a given Π.
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The first equilibrium corresponds to a 30% output drop and 10% deflation. The second

equilibrium, is a hyperdeflation equilibrium that generates 26% drop in prices per annum and

over 75% drop in output. The first equilibrium is very similar to, and exhibits properties of the

log-linear approximate equilibrium studied in the literature, such as Eggertsson and Woodford

(2003). It is locally unique and determinate. The second equilibrium, however, is locally inde-

terminate (Blanchard and Kahn 1980). This means that for small perturbation there are infinitely

many solutions that satisfy the equilibrium conditions. Moreover, it can be shown that inde-

terminate equilibrium is also not learnable/E-stable.14 Accordingly, the next subsection focuses

on the determinate equilibria, leaving the analysis of second equilibrium to future work as its

economic interpretation is less clear. 15 As shown in Figure 2, the AS and AD curves are “almost

linear” up to the stable equilibrium. The next section compares the solution obtained of the non-

linear model to the solution from the log-linear approximation. It shows that the key qualitative

prediction of the theory obtained from the log-linearized model still applies in the non-linear

model.

Figure 2: The stable equilibrium in the non-linear Calvo model
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14See McCallum (2007) for comparisons of E-Stability and determinacy criterions. Similar conclusions have been
arrived by Christiano, Eichenbaum and Johannsen (2018).

15Henceforth, the figures display the comparative statics around the first equilibrium which is locally determi-
nate. The web appendix on the authors’ website provides matlab codes that run the simulations to establish this
indeterminacy.
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3 Output drops at the ZLB in the non-linear and the linear model

A key prediction of the log-linearized New Keynesian model is that for small shocks, there can

be a large drop in output and inflation. This occurs due to a bifurcation. A natural first question

is if this is an artifact of the log-linearization. This section confirms this phenomenon in the

nonlinear model. As shown in Eggertsson (2011), the log-linearized model under the assumption

of a two state Markov chain with an absorbing state can be expressed as:

1. Aggregate Demand

ŶS = ĜS +
σ

(1− µ)
(µπS − re

S)

where ŶS ≡ YS−YL
YL

; ĜS ≡ GS−GL
YL

; πS ≡ ΠS − 1; re
S ≡ log β−1 + (1 − µ) log ξS and σ̃ =

σ(1− GL)

2. Aggregate Supply

(1− βµ)πS = κŶS + κψ
(

χwτ̂w
S − σ−1ĜS

)
whereχw ≡ 1

1−τw
L

; τ̂w
S ≡ τw

S − τw
L ; κ ≡ (1−α)(1−αβ)(ω+σ−1)

α(1+ωθ)
and ψ ≡ 1

σ−1+ω

Figure 3: AS-AD: Exact and log-linear approximation
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Figure 3 plots the AS and AD curves for the exact non-linear Calvo model and compare

the solution to a log-linear approximation. Both the exact model solution and the log-linear

approximation are parameterized to generate a 30% drop in output and 10% drop in inflation at

the intersection of the curves. The method used to parameterize the model is discussed further

in Section 4, this section outlines features of the solution that do not rely on the particular

parameterization, even if tying the model down with numbers is useful for illustration.

Let us first consider the log-linear approximation. Proposition 3 in Eggertsson (2011) estab-

lishes that the condition for local determinacy in the log-linear approximation of the model at

12



the ZLB is

L(µ) ≡ (1− µ)(1− µβ)− κµσ > 0 (10)

which says that the AD curve needs to be steeper than the AS curve. This will always be the

case for a small enough µ, i.e. if the probability of going back to “long run” is large enough.

As the probability of staying in the depressed state increases, the two curves become close to

parallel and the drop in output and inflation goes to -∞. The log-linear approximation of the

model exhibits an explosion at a critical value µ̄ at which point no solution exists (the lines are

parallel). This is called the bifurcation point. When µ > µ̄ there is indeterminacy in the log-

linearized model. This explosive behavior is at the heart of the model. It explains how “small”

shocks can trigger large drops in output.

The right hand side panel of figure 4 shows an example of the comparative static as µ is

increased in the log-linear approximation of the model. This leads to larger output drop and

larger deflation. The right hand side panel of figure 5 shows the exact bifurcation point in the

log-linear approximation. The second and third rows of the right hand side of of figure 6 shows

how output and inflation behave as a function of µ. Output and prices drop without a bound as

µ increases converging to −∞ at the bifurcation point, which is not shown in the figure.

Let us now move to the exact non-linear model. Is this bifurcation only an artifact of the

log-linearization? Recall that from figure 1 we are considering comparative statics of the first

equilibrium, which is well behaved and determinate. In this equilibrium the relative slope of AD

and AS are the same in the non-linear solution and the log-linear approximation as shown in

3. Figure 4 shows the effect of increasing the persistence of the shock in the non-linear model

(left hand side) similarly leads to a larger recession in the non-linear model. The key difference

between the non-linear and the log-linear approximation is show in figure 5. The bifurcation

point occurs in the log-linear model (see right hand panel) when the linear AD and AS curves

are paralell at µ̄. When µ > µ̄ then the relative slope of the two lines is reversed, and the model

is indeterminate. Meanwhile, we see that in the non-linear model there is also a critical value for

two curves when they are tangent to each other as shown in the left hand side panel of figure 5.

However, output and inflation do not explode at the bifurcation point. Instead, as seen in figure

6, bifurcation occurs at 1− µ = 0.093 where deflation is 16% and the output drop is 48%. As can

be seen in figure 5 this happens as the two curves no longer intersect, i.e. the AS curve is convex

and is tangent to the AD curve, at finite values of output and inflation.

An interesting implication of this solution is that a marginal increase in µ beyond the bifurca-

tion point implies that the non-linear model has no solution. Hence the indeterminacy region in

the log-linearized model does not seem to be of much practical interest; in the non-linear coun-

terpart the comparable region of the parameter space corresponds to non-existence of equilibria.
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The bound (10) on µ is, however, different for the nonlinear model. It is implicitly a condition

requiring µ to be small enough so that two curves AD and AS intersect tangentially. If that

condition fails to be satisfied there is non-existence rather than indeterminacy. The remainder of

the paper focuses on the case in which the model is away from the bifurcation point, so that an

equilibrium exists, and analyzes the determinate equilibria in the non-linear model.

Figure 4: AS-AD: Comparative Statics with respect to µ
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Figure 5: Bifurcation point: AS - AD
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4 Multipliers and paradoxes in numerical experiments

This section first describes the parameterization in more detail for the two scenarios discussed in

the introduction, then moves to analyze tax and spending multipliers.

The Great Depression scenario is defined as an event in which output drops by 30% and

inflation (annual) by 10%. The Great Recession is defined as a less extreme event with 10%

14



Figure 6: Bifurcation point: Multipliers versus Exit probability
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drop in output and 2% drop in inflation. The parameters and shocks are chosen to maximize

the posterior distribution of the model for both the linear and non-linear model. The priors

are discussed and method for parameterization is discussed in detail in Denes and Eggertsson

(2009) and are reproduced in the Appendix. The key focus of that paper is the sensitivity of

the conclusions drawn to the choice of priors. In this paper, we investigate whether the policy

conclusions derived from the linear model are robust to considering a non-linear model. The

mode of the posterior of the model is reported in Table 2 for the exact model and the log-linear

approximation. Observe from Table 2 that the exact choice of parameters and shocks needed

to generate the GD and GR will depend on whether the parameterized is based on the exact

non-linear model or its log-linear approximation. This, of course, should not be surprising. The

interesting question is if, given the procedure for choosing the parameters, it matters if one

uses the exact model vs. its log-linear approximation. Does this choice have any effect on the

economic inference one draws once these two equilibrium characterizations have been used to

replicate numerically a specific economic scenario (GR or GD)? That is the focus of the remainder

of this section.16

Rows 3 and 4 of Table 2 show the multipliers of government spending and labor tax cuts

in the linear and the non-linear models at zero interest rate for the two numerical experiments.

In the GD scenario the multiplier is 2.42 in the non-linear model, and 2.22 in the log-linear

16The mode is computed using a Matlab maximization routine developed by Christopher Sims. All codes used to
construct the tables and the figures in this paper are available on the authors’ websites. In Appendices A.5-A.7, we
report the priors and the estimated posteriors. The posterior distribution is estimated using a Metropolis algorithm
for the non-linear model, following the method detailed in Denes and Eggertsson (2009) for the log-linearized model.
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Table 2: Parameterizations under “Great Depression” and “Great Recession’ scenarios’

Scenario Great Depression Great Recession
Model Non-Linear Linear Non-Linear Linear
Ŷ -30% -30% -10% -10%
π -10% -10% -2% -2%
∂Ŷ
∂G 2.4166 2.2168 1.2905 1.1828
∂Ŷ

∂τw 1.5889 0.9953 0.1198 0.1499
α 0.7696 0.7721 0.7752 0.7871
β 0.9969 0.9969 0.9970 0.9970
σ̃−1 0.9981 1.4561 1.3498 1.6125
ω 1.3244 1.7465 2.4811 1.7415
θ 10.4066 13.1190 14.6357 13.6012
1− µ 0.09851 0.0965 0.0987 0.1393
re

S -0.0134 -0.0111 -0.0118 -0.0136

approximation. The tax-increase multiplier is 1.59 vs 0.99. Hence both the large value of the

government spending multiplier at the ZLB and the positive effects of tax increases at the ZLB

(the paradox of toil) are maintained in the non-linear model. All the multipliers are smaller in

the GR scenario, but the differences between the linear and non-linear model are of the same

order. Figure 7 shows the comparative static of increasing government spending in the linear

and non-linear model. Qualitatively the effects are the same, since the relative slopes of the two

curves are the same, albeit the exact numbers differ. Even quantitatively, the effect of sizable

government spending increases shown in figure 7 are not very different across the two models.17

Comparative statics for labor tax cut are shown in figure 8, confirming the paradox of toil.18

It is instructive to look at the behavior of the multiplier across the two models. The key

economic insight of the literature that relied on log-linear approximation was that as the output

drop becomes bigger, the government spending multiplier becomes larger. This phenomenon is

shown in figure 6. In both models, as the probability of the staying at the zero bound increases,

the drop in output intensifies. In the linearized model this means that the multiplier of govern-

ment spending goes to ∞ as the drop in output goes to -∞. In the non-linear model, however,

bifurcation occurs at a finite level of output drop. At that point the multiplier of government

spending is very large or about 40.

Figure 9 compares the two models for an increase in price flexibility. Only the AS curve is

affected by change in the price flexibility parameter. As prices become more flexible, more firms

adjust them downward in response to a liquidity trap shock and hence more severe is the down-

17In the figure below, government spending is temporarily increased in both models from 20 percent of steady
state output to 30 percent of steady state output

18In figure 8 the steady state payroll tax is temporarily reduced from its steady state of 30 percent of GDP to 26
percent of GDP.
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Figure 7: Government Spending: Comparative Statics
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Figure 8: Tax Cut: Comparative Statics
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turn. This perverse effect has been extensively explored in Eggertsson (2011) and Christiano,

Eichenbaum and Rebelo (2011) among others and is confirmed in the non-linear model. This

paradox is discussed in Bhattarai, Eggertsson and Schoenle (2014) in a more general setting away

from the ZLB in an estimated DSGE model.

5 Comparison to Rotemberg pricing

We show that the policy disagreements in the non-linear Rotemberg model documented in

Boneva, Braun and Waki (2016) and Miao and Ngo (2016) emerge because of implausibly large

resource costs spent on price adjustment. There exist, however, appropriate modifications to

the non-linear Rotemberg model, often applied in the literature, that yield quantitatively similar

policy implications as the Calvo model as we discuss in Section 5.1.
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Figure 9: Paradox of Flexibility
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Notes: The parentheses show the value of α corresponding to the curves.

In the Rotemberg (1982) model, the intermediate firms make the decision to change prices by

incorporating the following cost of adjusting prices into their profit function:

αr

2

(
Pt(i)

Pt−1(i)
− 1
)2

Yt.

The log-linearized Rotemberg and Calvo models coincide if the adjustment parameter is related

to the Calvo price adjustment probability in the following way:

αr =
α(θ − 1)(1 + ωθ)

(1− α)(1− αβ)
.

Following the same algebra as in the Calvo model, the following system of equations for the

Rotemberg model can be derived under the same assumption about uncertainty and government

policy as before.

1. Euler

1 = β(1− µ)

(
1− GL

CS

)−1/σ̃ 1
ξS

+ βµ
1

ΠS

2. NK Phillips Curve

[1− βµ](ΠS − 1)ΠS =
θ − 1

αr

(
θ

θ − 1
λCσ̃−1

S Yω
S

(1− τw
S )
− 1

)

where λ ≡ θ−1
θ (1− τw)(1− GL)

σ̃−1
.
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3. Resource Constraint

YS

[
1− αr

2
(ΠS − 1)2

]
= CS + GS,

where αr =
α(θ − 1)(1 + ωθ)

(1− α)(1− αβ)
(11)

This system of equations can be simplified to yield a system of two equations (AD-AS) in two

unknowns as before:

1. AD curve: The AD curve in the low state is derived from the Euler equation and the

Resource Constraint, together with the stipulation that the ZLB is binding:

YS =
[
1− αr

2
(ΠS − 1)2

]−1
{

GS + (1− GL)

{[
1− βµΠ−1

S

] ξS

(1− µ)β

}σ̃
}

2. AS curve: The AS curve in the low state is derived from the New-Keynesian Phillips curve

and the resource constraint:

[1− βµ](ΠS − 1)ΠS =
θ − 1

αr

(
θ

θ − 1
λ{YS

[
1− αr

2 (ΠS − 1)2]− GS}σ̃−1
Yω

S
(1− τw

S )
− 1

)

Figure 10: Non-linear Rotemberg model vs its log-
linearized approximation
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Figure 11: Resource Costs in the Rotemberg model
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Figure 10 plots the AS and the AD curves for the non-linear Rotemberg model and compares

to the log-linear approximation assuming the following parameters: the log-linear Rotemberg

model and the log-linear Calvo model coincide. Accordingly the the same parameterization

is used for the log-linear Rotemberg model as in Table 2, using equation 11 to back out the
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relevant parameters for the log-linearized Rotemberg model. The figure shows that the log-

linear Rotemberg model generates the Great Depression scenario, consistent with 30 percent

drop in output and 10 percent drop in inflation. The non-linear Rotemberg model, however,

cannot generate the GD scenario. To illustrate why this is the case, the same parameterization is

fed into the non-linear model and shown in the figure 10. It is evident, from the graph, that a

fundamental divergence occurs between the linear and non-linear model.

As the figure reveals, the nonlinear Rotemberg model behaves in a fundamentally different

way compared to the log-linear approximation. While the log-linear model generates a GD sce-

nario, the non-linear Rotemberg model show a different equilibrium altogether. The two curves

intersect at inflation drop of 2.70% and output drop of 4.95%. More importantly, however, the AD

curve has changed its slope. If inflation goes below approximately −1% then aggregate demand

becomes upward sloping, i.e., the larger the fall in the prices, the more output is demanded in

the aggregate. This is in contrast to the non-linear and the log-linear approximation of the Calvo

model discussed so far, as well as different from the log-linear approximation of the Rotemberg

model.

Is this behavior of the non-linear Rotemberg model economically meaningful? Figure 11

sheds some light on this. It shows that as inflation goes down, more of the economy’s resources

go into changing prices. For example, a 10% deflation as observed during the Great Depression

would require over 100% of the output of the economy to change prices. Clearly then, by as-

sumption, the Rotemberg model parameterized with physical resource costs of this kind cannot

generate a Great Depression, a result also reported in Boneva, Braun and Waki (2016). More

generally, the large implied resource costs of changing prices is key to understanding why the

AD curve changes its slope. It is instructive to write out the aggregate resource constraint

YS = CS + GS + YS
αr

2
(ΠS − 1)2

The three components of aggregate spending, YS, are private consumption, government con-

sumption and resources spent to change prices. In the conventional analysis, demand goes down

at the ZLB because a reduction in inflation (dis-inflation) increases the real interest rate. This re-

duces private consumption, CS, and thus aggregate demand YS. In this model, however, there is

one additional force. As deflation increases, each firm “demands” more output to change prices.

At relatively low values of inflation, this force is weak, and thus the aggregate demand slope re-

mains downward. Figure 10 shows that this happens until about −1% inflation in our example.

This effect is absent in the non-linear Calvo model. In fact, AD curve in that case is almost linear

in inflation. Hence the major difference in the results between the two models is the implica-

tion that the large resource costs of price adjustment have on aggregate demand. The AS curve

20



also changes slope in the Rotemberg model with high enough deflation, i.e. output increases as

inflation goes down. The reason is once again the high resource costs of changing prices. As

inflation goes into negative territory, more resources go into changing prices. This reduces the

consumption of the representative agent, thus increasing his marginal utility of income. This, in

turn, will increase his labor supply, and increase aggregate supply.

The large resource costs of price changes rely heavily on the quadratic form of price adjust-

ment and the fact that the value of αr is very large.19 It seems implausible that at moderate levels

of inflation, the actual output needed to change prices increases quadratically, corresponding to

over 100% of all output. Indeed, since the costs are quadratic, then inflation of about −10% is

not technically feasible in the numerical experiment reported above as it would overwhelm the

workforce. Since this particular mechanism is driving most of the non-linearities in the Rotem-

berg model it does not seem to be a good price-setting assumption to study extreme events of

this form.20

There is, however, a simple modification of the Rotemberg model in which case the results

from this model are similar to the Calvo model. Rotemberg’s (1982) preferred interpretation of

the quadratic costs faced by firms was not physical menu costs, but instead that “... there is a

cost that captures the negative effect of price changes, particularly price increases on the reputation of

firms". An alternative interpretation of the Rotemberg model is thus simply that these are costs

perceived by firms, and are taken into account only in the firm maximization problem, but do

not correspond to direct cost of price changes. In this case, the model simplifies to

YS =

{
GS + (1− GL)

{[
1− βµΠ−1

S

] ξS

(1− µ)β

}σ̃
}

[1− βµ](ΠS − 1)ΠS =
θ − 1

αr

(
θ

θ − 1
λ{YS − GS}σ̃−1

Yω
S

(1− τw
S )

− 1

)
Figure 12 compares the non-linear (‘modified Rotemberg’) model to the linearized model. The

modified Rotemberg model is parameterized to match the GD scenario.21 As the figure shows,

the non-linear model has no difficulty replicating this scenario, and the qualitative features of the

model are now more in line with the non-linear and log-linearized Calvo model, eliminating the

19An anonymous referee pointed out the relevance of firm-specific labor markets in making αr high.This was shown
in detail by Keen and Wang (2007). They show that the assumption of firm-specific labor markets requires a larger
αr compared to economy wide labor markets, given the structural parameters from the Calvo model. We thank an
anonymous referee for making this connection. Miao and Ngo (2016) show that even in a model with economy-wide
labor markets the log-linear and the non-linear solutions of the Rotemberg model disagree because of implausibly
large resource costs. Another approach would be to calibrate a very low αr.

20Table 9 in the Appendix reports the multipliers in the Rotemberg model along with the resource costs.
21Table 10 in the Appendix reports the calibrated parameters and the corresponding mutlipliers in the modified

Rotemberg model and contrast them with those of the log-linearized model.
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different implication the two models had for the conduct of policy.

Figure 12: Modified Rotemberg Model versus the Linear Model
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5.1 Modifications to the Rotemberg model

Ascari and Rossi (2012) have already suggested the mathematical variation of the modified

Rotemberg model suggested in last subsection. In their model, while there are resource costs

of changing prices borne by firms, these costs are rebated to the household lump sum. Accord-

ingly, the costs do not show up in the economy’s resource constraint. In our example, however,

this interpretation would be a stretch, as it would imply lump-sum taxation above 100 percent of

GDP. We prefer, therefore, the more reduced form psychological interpretation where no lump-

sum taxation is required. Alternatively, the researcher could model these costs directly in the

utility function as Benhabib, Schmitt-Grohé and Uribe (2001).22

A complementary approach is to abandon the somewhat unattractive assumption of quadratic

costs of price adjustment, following the business cycle literature on investment adjustment costs.

It has been recognized in the business cycle literature that quadratic costs of investment adjust-

ment can lead to non-sensical conclusions for the same reason as here, large enough drop in

investment lead to implausible adjustment costs. Christiano and Davis (2006, p. 13-14) resolve

this by fitting a tenth degree polynomial, with standard Chebyshev interpolation that replicates

the first order investment dynamics implied by a quadratic adjustment function – yet at the same

time implies plausible equilibrium resource adjustment costs. The same approach can be used

22Another approach, suggested by an anonymous referee, would be to consider the price-adjustment costs as
intermediate goods and thus define output net of intermediate goods, i.e. Yt = Ct + Gt. This would also yield similar
qualitative results across the log-linear and the non-linear solutions.
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here, but this is left for future research.23

The key takeaway from this section is not that there is a serious policy disagreement be-

tween the Rotemberg and the Calvo model. Instead, a particular variant of Rotemberg model

with significant output costs of price adjustment generates economically meaningless dynamics

when solved non-linearly. It is recommended that the applied researcher exercises caution while

deriving policy implications from such a model, without appropriate modifications.

6 Discussion: Extensions and Limitations

6.1 Interpreting nonlinearities

Figure 13: AS-AD: Exact and log-linear approximation using the non-linear parameterization
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We calibrated the non-linear and the linearized Calvo solutions to generate identical scenarios

in terms of output drop and deflation. This choice of parameters and shocks is made to contem-

plate a “policy scenario” of the form we think is of economic interest. This does not mean,

however, that the two solution methods generate the same outcome in general, if we assume the

same parameters and shocks. Recall, that the shocks and parameters were in fact chosen so as

to generate the particular policy scenario in question. To make that clear, we show in Figure 13,

the non-linear and the linear model for the same set of parameters (Column 2 of table 2 ) that

generate the Great Depression scenario in the non-linear model.24 These parameters were chosen

by estimating the non-linear model. Clearly, the linearized model generates extreme results in

23As these authors point out the assumption of the adjustment function being quadratic is arbitrary, and has
usually been only made for simplicity in the context of non-linear models that are ultimately approximated by log-
linear approximation. Taken literally, the non-linear counterpart then implies non-sensical investment adjustment
costs.

24We thank an anonymous referee for stressing this point to us and suggesting this numerical example.
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this example and would yield very different policy conslustions. This, however, is not a general

result. In some parameter configurations, the non-linear model leads to more extreme results.

This highlights that the interpretation of our experiments is not that non-linearities are “ir-

relevant" in the sense that if one picks a particular set of parameters and shocks then it does

not matter if the model is solved using log-linear approximation or non-linear solution meth-

ods. Instead, the interpretation is that if the parameters and shocks are chosen so as to match a

particular economic scenario, then it is of little consequence if the researchers uses a log-linear

approximation or considers the non-linear model, at least for the special case we consider here.

In the Appendix A.8, we show that what is of primary importance in our example is the choice of

the underlying shocks, rather than the particular parameter values. We use identical parameter

values across the two solution methods but calibrate the shocks to replicate a common economic

scenario. The policy multipliers across the solution methods are essentially identical.

What is one to make of this? One interpretation, and takeaway, is that the non-linear model

represents the truth, while the log-linear approximation represents a model mis-specification. If

one adopts this interpretation the log-linearized model is a less ideal procedure than parameter-

izing and estimating the fully non-linear model.

Another interpretation is that the first order dynamics captured by the the log-linear approx-

imation may be closer to the “truth” in the sense that they apply for a broad class of model,

e.g. both the Rotemberg and the Calvo model follow these first order dynamics. Thus, the re-

searcher might hope that this representation is less misspecified than either of the non-linear

micro-founded models for the issue under study and feel more confident about conclusion that

did not depend upon second order dynamics. For example, few researchers would seriously

argue that the cost of price changes are convex as in Rotemberg, or that the opportunity for

changing prices arrives independently of the past price setting as in Calvo. Instead, the hope

in both cases is that the underlying assumptions provide a representation that is not too far

from the truth, or in any event capture the first order dynamics.25 Nevertheless, it may very

well be that the first order dynamics of the model are still approximately accurate in a more

complete micro-founded variation of the model that generates more plausible dynamics of price

dispersion.

Questions about model specification are important issues for further research, for which we

do not offer any concrete answers. Instead, our goal is more limited and simply address the

question: If one uses a consistent way of parameterizing the Calvo model at the ZLB, is it im-

25This is, in fact, why Rotemberg costs are typically assumed to be quadratic. It is not because a quadratic function
is a plausible description of reality, but instead because it implies analytically convenient linear first order dynamics.
Another reason to be more interested in the first order properties of the model for extreme shocks, rather than the non-
linear counterpart, is that price dispersion becomes extremely large in that case to an extent that seems implausible.
Moreover, this does not seem in sync with recent evidence as in Nakamura et al. (2016)
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portant which solution method is adopted for the question at hand? This paper is a simple but

widely studied example in which case the answer to this question is no. This should serve as a

warning for researchers that use estimates for log-linearized model and apply those parameters

to the non-linear solution. What is needed in the latter case is a full re-estimation of the model.

Our experiment also provides a counterexample to the claim by Judd, Maliar and Maliar

(2017, JMM henceforth) that approximation errors in the log-linearized version of the standard

New Keynesian model “are so huge that even under most optimistic scenario makes these nu-

merical solutions inacceptable for any application.” TO make this assessment, JMM compare the

performance of a log-linear approximation of Smets and Wouters (2007) model to its non-linear

counterpart under particular calibrations for the deep parameters of the model and the structural

shocks. One key point of this paper, however, is that any calibration of the deep parameters of the

model (the Smets-Wouters model is an alternative example) as well as the shock processes, are

always chosen conditional on a particular approximation method in order to match the underlying

data. Hence, in order to compare a fully non-linear solution to a log-linear approximate solution

of the Smets-Wouters model, the more informative comparison would be to parameterize each

solution to match exactly the same data. Once this is done, it becomes interesting to ask if the

two approximation methods generate meaningful differences for key policy questions that they

are aimed to answer, since this is in fact the process by which these models are used in practice

(the modeler estimates the model with the data, and then does experiments to inform policy

decisions). As we have seen in the case of a simple ZLB experiment, a log-linear approximation

would fail miserably according to JMM’s criterion. Yet, it generates essentially the same quanti-

tative conclusion for the key policy questions, even under extreme scenarios meant to match the

Great Depression. It is yet to be seen if the same insight applies to the Smets-Wouters model.

6.2 Estimation with a cost-push shock

It has been suggested that a source of missing deflation in the US economy during the Great

Recession can be attributed to the presence of adverse technology and oil-price shocks. To con-

sider the robustness of our result to this feature we re-compute the mode by also introducing an

aggregate supply shock $S in the linear and non-linear Calvo models. $S follows the two-state

Markov chain and has the same prior distribution as the demand shock. We replicate the Great

Recession scenario, to hit 10% drop in output and 2% drop in inflation. Table 8 reports the mode

and multipliers for the log-linear and the non-linear solutions of the Calvo model. The estima-

tion does put considerable weight to the cost-push shocks across both solutions, as this allows

the model to capture both output and inflation dynamics with a price rigidity that is closer to the

prior. Since a cost-push shock during ZLB is inflationary, the multiplier on government spending
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is expected to be smaller, which is in fact true for both the solution concepts. Quantitatively, the

log-linear and the non-linear solutions generate similar fiscal multipliers even in the presence of

a cost-push shock.

7 Conclusion

This paper studies the non-linear properties of the Calvo model at the ZLB. It finds no policy dis-

agreement between the non-linear and the log-linear solutions of the model. It also suggests that

the economics behind policy disagreements stemming from certain versions of the Rotemberg

model are unrealistic. A modified Rotemberg model – arguably more in spirit with Rotemberg’s

original suggestion – delivers similar result as the Calvo model.
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A Appendix

A.1 System of equations for the Non-linear Calvo model under two-state Markov
chain assumption

1. Euler

1 = β(1− µ)

(
CL

CS

)−1/σ̃ 1
ξS

1
ΠL

+ βµ
1

ΠS

where CL = 1− GL, and ΠL = 1.

2. NK Phillips Curve

KS =
θ

θ − 1
λξSY1+ω

S + αβ(1− µ)KL + αβµΠθ(1+ω)
S KS

FS = ξL(1− τw
S )C−

1
σ̃

S YS + αβ (1− µ)FL + αβµΠ(θ−1)
S FS

KS
FS

=

(
1− αΠθ−1

S
1− α

) 1+ωθ
1−θ

where λ ≡ θ−1
θ (1− τw)(1− GL)

σ̃−1
.

3. Monetary Policy Rule:
it = izlb ,in the short run

4. Resource Constraint
Yt = Ct + Gt

5. Fiscal Policy rule: Normal Government Spending GL is calibrated at 0.2 (20% of steady
state GDP). Labor Taxes τw

L . are calibrated at 0.3. To calculate fiscal multipliers: when ZLB
is binding, GS > GL. For Paradox of toil, τw

S < τw
L .

6. Preference Shock
ξS < ξL ≡ 1

A.2 Mapping the shock in the linear Calvo with the non-linear Calvo

r̂e
S = log β−1 + (1− µ) log ξS

=⇒ log ξS =
(re

S − log β−1)

(1− µ)

=⇒ ξS = exp(
(re

S − log β−1)

(1− µ)
)

Defines a correspondance between ξS and r̂e
Sa

A.3 Determinacy in the non-linear model

Under the two state assumption (with a binding zlb), the dynamic system can be written as:
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1. Euler

0 = βµES
t

(YS
t+1 − GS

YS
t − GS

)−1/σ̃
1

ΠS
t+1

+ β(1− µ)

( 1
YS

t − GS

)−1/σ̃
1
ξS

− 1 (A.1)

≡ f 1( ES
t YS

t+1, ES
t ΠS

t+1, YS
t )

2. NK Phillips Curve

0 =
θ

θ − 1
λξS(YS

t )
1+ω + αβ(1− µ)KL + αβµES

t

[
(ΠS

t+1)
θ(1+ω)KS

t+1

]
− KS

t (A.2)

≡ f 2(ES
t ΠS

t+1, ES
t KS

t+1, YS
t , KS

t )

0 = ξS(1− τw
t )(YS

t − GS)−
1
σ̃ YS

t + αcβ(1− µ)FL + αβµES
t

[
(ΠS

t+1)
(θ−1)FS

t+1

]
− FS

t (A.3)

≡ f 3(ES
t ΠS

t+1, ES
t FS

t+1, YS
t , FS

t )

0 =
KS

t
FS

t
−
(

1− α(ΠS
t )

θ−1

1− α

) 1+ωθ
1−θ

≡ f 4(ΠS
t , KS

t , FS
t ) (A.4)

having substituted in the resource constraint and assuming that GS
t+1 = GS

t = GS. Observe
that the expectation of each variable conditional on that the shock will remain in the low "short-
run" state in the next period is denoted by ES. Writing the system in this way, this represents
a regular rational expectation system that can be solved via standard methods, e.g. using Blan-
chard and Kahn (1980).

Linearizing this system of equations yields:[
∂ f 1

∂ES
t YS

t+1

]
ss

ESŶS
t+1 +

[
∂ f 1

∂YS
t

]
ss

ŶS
t +

[
∂ f 1

∂ES
t ΠS

t+1

]
ss

ES
t πS

t+1 = 0 (A.5)[
∂ f 2

∂KS
t

]
ss

kS
t +

[
∂ f 2

∂YS
t

]
ss

ŶS
t +

[
∂ f 2

∂ΠS
t

]
ss

πS
t +

[
∂ f 2

∂ES
t KS

t+1

]
ss

ESK̂S
t+2 = 0 (A.6)[

∂ f 3

∂FS
t

]
F̂S

t +

[
∂ f 3

∂YS
t

]
ss

ŶS
t +

[
∂ f 3

∂ΠS
t

]
ss

πS
t +

[
∂ f 3

∂ES
t FS

t+1

]
ss

ES
t F̂S

t+1 = 0 (A.7)[
∂ f 4

∂KS
t

]
ss

K̂S
t +

[
∂ f 4

∂FS
t

]
ss

F̂S
t +

[
∂ f 4

∂ΠS
t

]
ss

πS
t = 0 (A.8)

where small letters { ŶS
t , πS

t , K̂S
t , F̂S

t } indicate deviations of the variables from the solution around
which the equations are linearized. This system of equations is determinate if there are at least
3 unstable eigenvalues outside of the unit circle. Numerically simulations (using reds and solds)
suggest that the second equilibrium fails to meet the determinacy conditions and hence is locally
unstable. Henceforth, the paper only investigates the properties of the stable equilibrium (in this
case, it is the one that produces 30% drop in output and 10% drop in inflation ).
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A.4 Determinacy in the linear model - Proposition 3 from Eggertsson (2011)

Lemma 1. An approximate equilibrium defined by the collection of stochastic processes {ŷS, πS} at zero
interest rates is a locally unique bounded equilibrium, for a given path of these variables after the ZLB
stops binding and a given value of re

S. if C1 and C2 hold, where

re
S < −Γτw τ̂w

S − ΓG ĝS (C1)

L(µ) ≡ (1− µ)(1− µβ)− κµσ > 0 (C2)

A.5 Priors used for likelihood estimation

The same priors are used across all likelihood maximization procedures. These were first used
by Denes and Eggertsson (2009) and the consequent literature. Table 3 reproduces them.

Table 3: Distributions of Priors

distribution mean standard deviation Prior 5% Prior 50% Prior 95%
α beta 0.66 0.05 0.5757 0.6612 0.7402
β beta 0.99669 0.001 0.9949 0.9968 0.9981

1− µ beta 1/12 0.05 0.0198 0.074 0.1788
σ̃−1, σ−1 gamma 2 0.5 1.2545 1.9585 2.8871

ω gamma 1 0.75 0.1519 0.82 2.4631
θ gamma 8 3 3.7817 7.6283 13.4871

−re
S gamma 0.010247 0.005 0.0036 0.0094 0.0196

Notes: σ(1− GL) = σ̃, where GL is calibrated to 0.2.

A.6 Posteriors in log-linear model

Table 4: Posteriors for the structural parameters and the shocks in the log-linear Calvo model

Great Recession Great Depression
distribution Pos 5% Pos 50% Pos 95% Mode Pos 5% Pos 50% Pos 95% Mode

α beta 0.7149 0.7731 0.8227 0.7871 0.6876 0.7616 0.8121 0.7721
β beta 0.9948 0.9968 0.9982 0.997 0.9949 0.9969 0.9982 0.9969

1− µ beta 0.1003 0.1557 0.2361 0.1393 0.0739 0.1027 0.1425 0.0965
σ−1 gamma 0.8426 1.2995 1.8834 1.29 0.8792 1.2435 1.6906 1.1649

ω gamma 0.9383 2.0761 4.0045 1.7415 0.7648 1.8224 3.6873 1.7465
θ gamma 8.4754 13.8292 20.5524 13.6012 9.753 14.2748 22.6658 13.119

−re
S gamma 0.0262 0.0159 0.0083 0.0136 0.0277 0.0149 0.0082 0.0111

Table 5: The posterior distribution of the fiscal multipliers in the log-linear Calvo model

Great Recession Great Depression
Pos 5% Pos 50% Pos 95% Mode Pos 5% Pos 50% Pos 95% Mode

∂Ŷ
∂τw 0.2809 0.1099 0.0519 0.1499 1.6222 0.7086 0.305 0.9953
∂Ŷ
∂G 1.0775 1.1599 1.3401 1.1828 1.4451 1.8627 2.7951 2.2168
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A.7 Posteriors in non-linear Calvo model

Table 6: Posteriors for the structural parameters and the shocks in the non-linear Calvo model

Great Recession Great Depression
distribution Pos 5% Pos 50% Pos 95% Mode Pos 5% Pos 50% Pos 95% Mode

α beta 0.7083 0.7589 0.8205 0.783 0.7594 0.7684 0.7765 0.7696
β beta 0.9949 0.9968 0.9981 0.997 0.9948 0.9967 0.9982 0.997

1− µ beta 0.0662 0.0841 0.0986 0.0939 0.0991 0.1085 0.1197 0.0985
σ̃−1 gamma 1.1338 1.6101 2.0967 1.3498 0.9712 1.0419 1.1281 0.9981

ω gamma 1.7784 3.124 4.9063 2.4506 1.2407 1.3207 1.4043 1.3244
θ gamma 10.9097 16.7474 22.7434 15.7444 9.5527 10.2092 10.5979 10.4066

−re
S gamma 0.0189 0.012 0.0073 0.0115 0.0282 0.0198 0.0131 0.0134

Notes: σ(1− GL) = σ̃, where GL is calibrated to 0.2.

Table 7: The posterior distribution of the fiscal multipliers in the non-linear Calvo model

Great Recession Great Depression
Pos 5% Pos 50% Pos 95% Mode Pos 5% Pos 50% Pos 95% Mode

∂Ŷ
∂τw 0.1855 0.0915 0.0522 0.1088 1.6866 0.9463 0.5781 1.5889
∂Ŷ
∂G 1.2017 1.2824 1.4208 1.2677 1.7167 1.9586 2.4295 2.4166

A.8 Using a common non-linear Calvo parametrization

To provide further evidence on similarities between the comparative statics in the log-linear and
nonlinear Calvo models, we plot the AS and the AD curves in the two models using a common
parametrization. The structural parameters are such that the non-linear model reproduces the
Great Depression sccenario. These are reported in Column 2 of Table 2. In order to generate an
identical scenario in the log-linear model, we recalibrated the persistence of the ZLB shock µ and
the severity of the shock re

S such that the log-linear model also generates the Great Depression
scenario i.e. output drop (ŷS) is 30% and inflation drop (4π̂S) is 10%.

µ = β−1
(

1− κŷS
π̂S

)
; re

S = σ−1 ((1− µ)ŷS − σµπ̂S)

where σ(1 − GL) = σ̃, and GL is calibrated to 0.2. Figure 14 compares the two variants for
this parametrization. The output drop and inflation drop is same across the two models. The
magnitude of fiscal multipliers in the log-linear model is less than the non-linear model. Contrast
this with the results reported in figure 13 where the log-linear model produces much higher
multipliers, because of high persistence of the ZLB shock.
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Figure 14: AS-AD: Exact and log-linear approximation using the non-linear parameterization
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A.9 Modeling AS Shifter

We model a cost-push shock in the log-linear and the non-linear Calvo model to show robustness
of our results to this extension. We assume that the markup shock follows a two-state process
identical to the preference shock. In the log-linear model, the AS curve is modified to:

(1− βµ)π̂S = κŷS + κψλ̂
p
S; λ̂t = log(1 + λp)− log(1 + λp); 1 + λp =

θ

θ − 1

The non-linear NK Phillips Curve is modified to include the markup shock θS

KS =
θS

θS − 1
λξSY1+ω

S + αβ(1− µ)KL + αβµΠθS(1+ω)
S KS

FS = ξL(1− τw
S )C−

1
σ̃

S YS + αβ (1− µ)FL + αβµΠ(θS−1)
S FS

KS
FS

=

(
1− αΠθS−1

S
1− α

) 1+ωθS
1−θS

where λ ≡ θL−1
θL

(1− τw)(1− GL)
σ̃−1

.
The relationship between parameters θS and λ̂

p
S is as follows:

θS =
exp(λ̂p

S + log θ
θ−1 )

exp(λ̂p
S + log θ

θ−1 )− 1

The prior distribution for λ̂
p
S is identical to prior for −re

S. Further we assume that markup
shock is perfectly correlated with the preference shock. Table 8 displays the estimated posterior
mode for each model.
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Table 8: Great Recession parameterizations for the nonlinear
Calvo and the Linearized Model

Scenario with AS shifter Benchmark
Model Non-Linear Linear Non-Linear Linear
∂Ŷ
∂G 1.2686 1.0850 1.2905 1.1828
∂Ŷ

∂τw 0.1521 0.0851 0.1198 0.1499
α 0.7663 0.7946 0.7752 0.7871
β 0.9967 0.9970 0.9970 0.9970
σ̃−1 0.8652 2.1849 1.3498 1.6125
ω 1.7428 1.4274 2.4811 1.7415
θL 12.6791 13.9012 14.6357 13.6012
1− µ 0.1572 0.1563 0.0987 0.1393
re

S -0.0130 -0.0231 -0.0118 -0.0136
λ̂

p
S 0.0067 0.0085 n/a n/a

A.10 Multipliers in the Rotemberg Model

Table 9 reports the multipliers in the Rotemberg model and compares them with those obtained
in the Modified Rotemberg model. Notes below the table explain in detail the parametrization
used. The core point is that if there is physical resource costs of changing prices (e.g. menu
costs) that take on a quadratic form, then the non-linear model is unable to produce a significant
drop in output and inflation.

Table 9: Multipliers in the Modified Rotemberg versus the Rotemberg
Model

Scenario Great Depression Great Recession
Model Rotemberg Mod. Rotem. Rotemberg Mod. Rotem.
Ŷ -1.5% -30% -5.2% -10%
π -4.6% -10% -1.5% -2%
∂Ŷ
∂G 0.4107 1.7684 0.6977 1.2455
∂Ŷ

∂τw -0.5542 0.2589 -0.2363 0.0835
a The parameters used in calculating these numbers are reported in Columns 1 & 3
of table 10. They match the Great Depression and the Great Recession Scenarios for
the Modified Rotemberg Model.

A.11 Parameters and Multipliers in the Modified Rotemberg Model
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Table 10: Parameterizations for the Modified Rotemberg and the
Linearized Model

Scenario Great Depression Great Recession
Model Mod. Rotem. Linear Mod. Rotem. Linear
Ŷ -30% -30% -10% -10%
π -10% -10% -2% -2%
∂Ŷ
∂G 1.7684 2.2168 1.2455 1.1828
∂Ŷ

∂τw 0.2589 0.9953 0.0835 0.1499
α 0.7720 0.7721 0.7667 0.7871
β 0.9957 0.9969 0.9970 0.9970
σ̃−1 1.2496 1.4561 1.1849 1.6125
ω 1.7109 1.7465 2.2316 1.7415
θ 10.4726 13.1190 14.4678 13.6012
1− µ 0.0910 0.0965 0.1326 0.1393
re

S -0.0193 -0.0111 -0.0155 -0.0136
α reported here is the Calvo parameter : 1 - probability of price ad-
justment. We estimate this α in our likelihood maximization in or-
der to use the same priors across all the specifications. It is straight-
forward to back out the Rotemberg αr using the formula reported
in the main text.
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