Discussion of
Zombie Credit and (Dis-)Inflation: Evidence from Europe
Viral Acharya, Matteo Crosignani, Tim Eisert and Christian Eufinger

Sanjay R. Singh
UC Davis

October 2019
Monetary Economics and Reality
Helsinki
introduction

Zombies come with stagnation and “low for long” policies

- increased forbearance: Peek-Rosengren (2005), Caballero-Hoshi-Kashyap (2008)

This paper: zombies responsible for lack of inflation in Europe

- via: increased within-industry competition
timely
■ brief review of key concepts

■ comments along the way to make the analysis stronger
 ■ comparing inflation across industries
 ■ descriptive statistics on the industry disaggregation would be helpful
 ■ how to interpret in a standard GE setting

Overall, this is a good paper with lot of details and careful analysis. Highly recommend reading.
A firm is a *zombie* if meets following criteria:

- $\frac{\text{EBIT}}{\text{interest expense}} < \text{median (industry-country)}$
- Leverage ratio $\frac{\text{interest expense}}{\text{total interest bearing debt}} > \text{median (industry-country)}$
- $\frac{\text{interest expense}}{\text{total interest bearing debt}} < \text{AAA firms’ avg interest rate}$

relatively standard in the literature

(yoy) CPI growth at industry-country level

- aggregated to industry from product level (five digit) data
some concerns on Eurostat CPI

some standard concerns

- outlet closing may be a problem in high zombie share × non-tradable industry
- presence of imported products in CPI - might matter for tradable vs non-tradable industries
- outlet bias [Aghion, Bergeaud, Boppart, Klenow, Li (2019, AER)]
- entry and exit of products [Feenstra (1994)]

how to compare across industries?

If variations in zombies change firm dynamics across industries (or within industry across countries):
simple aggregation of prices may miss quality changes
some suggestions

Provide some robustness to how the inflation (PPI + CPI) are combined.

- if not using already, could use Harmonized Index of Consumer Prices from Eurostat

- robustness to use of Laspeyres/Paasche/Fisher

- exact price index to account for product quality changes

 rough approximation: use firm-level data to construct market shares at the industry level to adjust for quality ala Feenstra (1994)

Serves two purposes

- quantify the extent of inflation mis-measurement in Euro area combining BvD with Eurostat

- robustness
exact price index under CES-DS structure: illustration

rate of increase in product variety matters for welfare

\[C_t = \left(\int_0^{N_t} [q_t(j)c_t(j)] \frac{\sigma-1}{\sigma} \, dj \right)^\frac{\sigma}{\sigma-1}; \quad \sigma > 1 \]

$q_t(j)$ is quality of variety j and N_t is # of active varieties. The aggregate price index is given by:

\[P_t = \left(\int_0^{N_t} \left[\frac{p_t(j)}{q_t(j)} \right]^{1-\sigma} \, dj \right)^\frac{1}{1-\sigma} \]

Feenstra (1994): true inflation for subset I_t is

\[\pi_t = \hat{\pi}_t - \frac{1}{\sigma - 1} \log \left(\frac{S_{I,t-1}}{S_{I,t}} \right) \]

increase in market share $S_{I,t}$ implies that relative price must be falling. The bias is larger when σ is smaller.

For endogenous markups $\mu(N_t)$, Feenstra and Weinstein (2017, JPE) derive price indices with symmetric translog preferences (see also Diewert (1976), Bergin and Feenstra (2001), Bilbiie Ghironi and Melitz (2008, 2012), Jaravel (2018)).
Q2: which sectors
descriptive stats on share of zombies by industry in the inflation-linked data would be useful

- show what industries remain in the inflation-linked data and their zombie share
- contribution of these industries to aggregate inflation?

to get a sense of aggregate effects

Note: Industries with higher share of zombies show lower CPI growth relative to control group
Table 1. Share of capital sunk in zombie firms by industry; average and standard deviation across countries

<table>
<thead>
<tr>
<th>Industry</th>
<th>Nace Rev.2 codes</th>
<th>2003–7</th>
<th></th>
<th>2008–12</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average (%)</td>
<td>Standard deviation (%)</td>
<td>Average (%)</td>
<td>Standard deviation (%)</td>
</tr>
<tr>
<td>Manufacture of food products, beverages, and tobacco products</td>
<td>10–12</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Manufacture of textiles, wearing apparel, leather, and related products</td>
<td>13–15</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Manufacture of wood and paper products; printing and reproduction of recorded media</td>
<td>16–18</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Manufacture of coke and refined petroleum products</td>
<td>19</td>
<td>19</td>
<td>25</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>Manufacture of chemicals and chemical products</td>
<td>20</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Manufacture of basic pharmaceutical products and pharmaceutical preparations</td>
<td>21</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Manufacture of rubber and plastics products, and other non-metallic mineral products</td>
<td>22–23</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Manufacture of basic metals and fabricated metal products, except machinery and equipment</td>
<td>24–25</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Manufacture of computer, electronic, and optical products</td>
<td>26</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Manufacture of electrical equipment</td>
<td>27</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: Adalat McGowan, Andrews and Millot 2018, OECD
zombie firms: which sectors? 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture of electrical equipment</td>
<td>27</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>28</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Manufacture of transport equipment</td>
<td>29–30</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Other manufacturing; repair and installation of machinery and equipment</td>
<td>31–33</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Electricity, gas, steam, and air conditioning supply</td>
<td>35</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Water supply; sewerage, waste management, and remediation</td>
<td>36–39</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Construction</td>
<td>41–43</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Wholesale and retail trade; repair of motor vehicles and motorcycles</td>
<td>45–47</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Transportation and storage</td>
<td>49–53</td>
<td>10</td>
<td>6</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Accommodation and food service activities</td>
<td>55–56</td>
<td>10</td>
<td>5</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Publishing, audiovisual, and broadcasting activities</td>
<td>58–60</td>
<td>8</td>
<td>5</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>61</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>IT and other information services</td>
<td>62–63</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Real-estate activities</td>
<td>68</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Leg., accounting, manag., architecture, engineering activities, technical testing, and analysis</td>
<td>69–71</td>
<td>11</td>
<td>7</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Scientific research and development</td>
<td>72</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Other professional, scientific, and technical activities</td>
<td>73–75</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Administrative and support service activities</td>
<td>77–82</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: Adalat McGowan, Andrews and Millot 2018, OECD
zombie firms, competition and inflation

OECD: manufacturing and services seem to be most affected by zombie shares

- is there a differential effect for mfg and services?
- use external financial dependence as a robustness for zombie share (Acharya et al 2019)?
some more micro points

In the model, higher # of surviving firms implies

- # of entrants fall
- higher quality of entrants

Is it possible to identify entrants? firm age perhaps?

Complementary hypotheses: liquidity squeeze channel (Gilchrist Schoenle Sim Zakrajsek 2017, AER)

- if increased zombie share is interpreted as increase in financial capacity, then GSSZ predict disinflation as well
- paradox of financial strength

Price data for multi-product firms serving multiple industries could help separate
dis-inflation effects begin mid-2012 when ECB lowered deposit rate to zero

- ACEE present a policy tradeoff: industrial policy vs aggregate demand management

- ACEE: more zombies, more industry sales growth → textbook AD
 - corollary of textbook AD story: non-tradable likely to suffer more from demand contraction, so expect more disinflation
 - what is the effect on sales growth for non-zombie firms in non-tradable industries?

A key question: how long lived are the Zombies? (Scylla and Charybdis)
 - temporary: negative markup shocks under constrained policy
 - persistent: persistently lower aggregate productivity
macro effects with temporary zombies: Scylla
NK models with negative markup shocks (with some simplifying assumptions)

- ↓ markup $\rightarrow \pi_t$. Inflation targeting CB lowers policy rate, and generates output boom (Galí 2016, Ch 5)
- At the ZLB or currency unions, this can generate perverse effects (Eggertsson (2012, AER), Eggertsson Ferrero Raffo (2014, JME), Galí Monacelli (2016, AER))
- temporary reduction in markups in the non-tradable sector generates deflationary effects + policy constrained at the ZLB \implies reduction in output
- if firm entry were to decline along with reduction in markups then contractionary effects likely exacerbated (see Cacciatore Duval Fiori Ghironi (2017, WP))
- if markups promote innovation incentives, even longer run effects (Garga and Singh 2016)
Charbydis: persistent effects on GDP (+ self-promotion)

Jordá-Singh-Taylor (2019): *The long-run effects of monetary policy*

Data: 17 advanced economies 1890-2015

Use trilemma to identify monetary policy shocks for open pegs
conclusion

The stagnation in Euro and Japan opened up interesting questions for us

- This paper: low interest rates encourage zombies to thrive and increase competition
- Increased congestion \rightarrow negative spillovers on healthy firms
- Policy transmission interacts with institutional setup to generate perverse effects of aggregate demand management
- Quantify mis-measurement, and “back of the envelope” aggregation

in my great and unmatched wisdom ...
ACEE offer horror w/o comic relief, but worth watching (reading)
appendix
some trends

Euro area annual inflation and its main components (%), September 2009 - September 2019 (estimated)
Chart 3.1: Classification structure for the various levels of aggregation of an HICP

- **All-items**
 - Division (2-digit ECOICOP)
 - Food and non-alcoholic beverages (01)
 - Alcoholic beverages and tobacco (02)
 - Other divisions (03 to 12)
 - Group (3-digit ECOICOP)
 - Food (01.1)
 - Non-alcoholic beverages (01.2)
 - Class (4-digit ECOICOP)
 - Fruit (01.1.6)
 - Vegetables (01.1.7)
 - Other classes
 - Sub-class (5-digit ECOICOP)
 - Frozen fruit (01.1.6.2)
 - Fresh or chilled fruit (01.1.6.1)
 - Preserved fruits and fruit-based products (01.1.6.4)
 - Dried fruit and nuts (01.1.6.3)
 - Sub-sub-class
 - Nuts
 - Dried fruit
 - Elementary product group
 - Peanuts
 - Almonds
 - All other nuts
 - Elementary aggregate
 - Peanuts sold in supermarkets in region A
 - Peanuts sold in supermarkets in region B
 - Peanuts sold in other outlets types and in other regions
 - Target sample
 - 500 g to 750 g of roasted peanuts salted or not salted, no shell, organic or non-organic.
 - 0.5 Kg to 1 Kg of roasted or raw peanuts, in shell, organic or non-organic.
 - Product offer (price observation)
 - 600 g jar of brand X of salted roasted peanuts without shell and organic
 - 0.5 Kg bag of brand Y of raw peanuts in shell, non-organic.
Source: Figure 3 from ACEE 2019 (this paper)
details on Eurostat CPI

Harmonized Index of Consumer Prices (HICP)

- household final domestic consumption expenditure aggregated to COICOP - 5 digit product group
- Laspeyres-type chain-linked index with weights calculated annually
- purchaser prices including taxes and discounts
- “measure of pure price change”