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Abstract

Diagnostic expectations constitute a realistic behavioral model of inference. This paper

shows that this approach to expectation formation can be productively integrated into the

New Keynesian framework. Diagnostic expectations generate endogenous extrapolation in

general equilibrium. We show that diagnostic expectations generate extra amplification in

the presence of nominal frictions; a fall in aggregate supply generates a Keynesian recession;

fiscal policy is more effective at stimulating the economy. We perform Bayesian estimation

of a rich medium-scale model that incorporates consensus forecast data. Our estimate of the

diagnosticity parameter is in line with previous studies. Moreover, we find empirical evidence

in favor of the diagnostic model. Diagnostic expectations offer new propagation mechanisms

to explain fluctuations.
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1 Introduction

Diagnostic expectations (DE) have emerged as an important departure from rational

expectations in macroeconomics and finance. Among the host of possible deviations

from rational expectations, there are three broad reasons that make diagnostic expec-

tations a leading alternative to consider for macroeconomic modeling. First, diagnostic

expectations constitute a microfounded deviation immune to the Lucas critique. Sec-

ond, this approach lends itself to a great deal of tractability, as a number of recent

efforts in macroeconomics and finance have demonstrated (see Bordalo, Gennaioli, and

Shleifer 2018; Bordalo, Gennaioli, Ma, and Shleifer 2020; Bordalo, Gennaioli, Shleifer,

and Terry 2021, among others). Third, based on the pathbreaking and influential work

on the “representativeness heuristic” by Kahneman and Tversky (1972), one ought to

consider this behavioral model as fundamentally realistic, and thereby portable across

fields of economics.1

In this paper, we argue that diagnostic expectations can be productively incorpo-

rated into the New Keynesian (NK) framework. We demonstrate this claim in two

parts, analytical and empirical. Analytically, using a three-equation NK model, we

show how diagnostic expectations bring rich insights on three issues raised by the lit-

erature. Empirically, by integrating diagnostic expectations into a rich medium-scale

DSGE model, we find that diagnostic expectations provide a superior fit of business

cycle and consensus forecast data. Our analysis brings novel implications for the in-

terpretation of fluctuations.

The first analytical issue we tackle is that of amplification and propagation in

general equilibrium. As shown in previous work (Bordalo, Gennaioli, and Shleifer

2018, henceforth BGS), diagnostic expectations (DE) imply an extrapolation of current

shocks into the future. Intuitively, this could generate extra volatility for endogenous

variables. We show that this intuition is in fact not guaranteed. In the presence of

nominal frictions (as in the NK model) DE generate extra volatility; in a frictionless

representative agent real business cycle (RBC) model, general equilibrium channels

shut down the effect of DE, and output is less volatile under DE than under rational

expectations (RE).

The second issue considered is whether a fall in aggregate supply can cause a de-

mand shortage. Since the onset of the COVID-19 pandemic, there is a renewed interest

on whether supply-side disruptions can ultimately generate shortfalls in aggregate de-

1Simply put, the representativeness heuristic is the general human tendency to over-estimate how representative
a small sample is, a pattern documented in a large body of literature in psychology and behavioral economics. For
a survey and more detailed discussion, see Kahneman, Slovic, and Tversky (1982).
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mand (see Guerrieri, Lorenzoni, Straub, and Werning 2022; Fornaro and Wolf 2022;

Caballero and Simsek 2021; Bilbiie and Melitz 2022, among others). Whereas the

rational expectations NK (RE-NK) model generates the opposite prediction, we show

that adding DE into the NK framework (DE-NK) allows for the possibility of “Keyne-

sian supply shocks”: Following a negative supply shock, diagnostic agents extrapolate

the shock into the future, and hence become excessively pessimistic. This pushes them

to reduce consumption drastically, generating a Keynesian recession. Later, beliefs

systematically revert, and the economy features a boom, as in the RE-NK model.

The third issue we tackle concerns government policy. We show how endogenous

extrapolation arising from the evaluation of the inflation process by diagnostic agents

can significantly raise the government spending multiplier. Current surprise inflation

causes the diagnostic agent to expect future inflation, thereby reducing the subjective

real interest rate. When the diagnosticity parameter is larger than the coefficient gov-

erning the reaction of the monetary authority to inflation, the DE-NK model generates

a multiplier greater than 1 even with i.i.d. government spending shocks. We show how

this analytical conclusion can be challenged by the degree of extrapolation of the ex-

ogenous shock process, which depends on the persistence of this shock. If the shock is

persistent enough, the DE of future spending can completely crowd out current con-

sumption and lead to a multiplier that is equal to 0, or even negative. Hence, the degree

of diagnosticity allows the model to span a wide range of multipliers, highlighting the

importance of the behavioral friction in this context.

On the empirical front, we let DE and RE compete within a medium-scale DSGE

model. Using Bayesian methods, we evaluate the relative fitness of both approaches

when applied to post-war U.S. data. We include both business cycle and forecast

data in the estimation. In order to submit the behavioral expectational friction to a

stringent empirical test, the model we consider contains a large number of benchmark

frictions and shocks drawn from the seminal works by Christiano, Eichenbaum, and

Evans (2005) and Smets and Wouters (2007b). For the same reason, we also include

news shocks and information frictions in the form of noise shocks to expectations. We

find empirical evidence in favor of DE. In comparison with the RE model, variance

decomposition and parameter estimates indicate that the DE model relies significantly

less on noise shocks when explaining errors in expectations. As a result, DE offer an

improved fit of the interest rate rule. Moreover, the DE model relies more on internal

propagation mechanisms than on exogenous shocks to account for the dynamics of

price and wage inflation in the data.

A recurrent and novel theme in our paper is that when agents have diagnostic
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beliefs about endogenous variables, instead of exogenous processes, new behavioral in-

sights emerge. Endogenous extrapolation, as highlighted throughout our applications,

has remarkable economic implications. For instance, when an adverse weather event

damages current inventories of a commodity, suppliers become optimistic about future

prices in anticipation of a lower future commodity supply. Under DE, suppliers ex-

trapolate the change in inventories, over-investing in the commodity. At a later stage,

there is a reversal. Over-investment generates disappointment, and the commodity

price is unexpectedly depressed. Similarly, when a taste shock hits, a consumer in-

creases current consumption. Under habit formation, the consumer also anticipates

higher consumption in the future. Due to DE, this anticipation is magnified: the

consumer forms excessively optimistic beliefs about future consumption, ultimately

pushing them to overreact to the taste shock. The paper illustrates these implications

with the help of a number of examples.

In order to capture endogenous extrapolation, throughout the paper we will use

the property that, when forecasting a variable, say yt+1, where yt+1 = yt + ut+1 and

yt is predetermined, the DE of yt+1 is not equal to yt plus the DE of ut+1: Eθt [yt+1] ̸=
yt+Eθt [ut+1] where Eθt is the DE operator, and θ > 0 is a diagnosticity parameter. The

representativess heuristic implies that innovations to predetermined variables produce

a form of cue-dependence. These innovations are, in fact, extrapolated into the future,

distorting beliefs about future states. We provide intuition for this mechanism in

Section 2. There, we also expand on the psychological underpinning of this property

by making a connection to recent work on the functioning of human memory (Gennaioli

and Shleifer 2010; Kahana 2012; Bordalo, Conlon, Gennaioli, Kwon, and Shleifer 2023).

Related Literature. The paper is primarily related to the emerging literature on

DE. See Gennaioli and Shleifer (2018) and Bordalo, Gennaioli, and Shleifer (2022) for a

review. Maxted (2022) and Bordalo, Gennaioli, Shleifer, and Terry (2021) incorporate

DE in macro-finance frameworks. Maxted (2022) shows that incorporating DE into a

macro-finance framework can reproduce several facts surrounding financial crises (see

also Krishnamurthy and Li 2021). Bordalo, Gennaioli, Shleifer, and Terry (2021) show

that DE can quantitatively generate countercyclical credit spreads in a heterogeneous

firms business-cycle model. D’Arienzo (2020) investigates the ability of DE to reconcile

the overreaction of expectations of long rates relative to the expectations of short rates

to news in bond markets. Ma, Ropele, Sraer, and Thesmar (2020) quantify the costs

of managerial biases. We complement these efforts by providing a general treatment

of DE in linear macroeconomic models. In particular, we show how incorporating DE
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into NK models (Woodford 2003; Gaĺı 2015) delivers rich new insights and significantly

improves the fit to the data.

In parallel and complementary work, Bianchi, Ilut, and Saijo (2022) also investigate

applications of DE in linear models. Although their work, like ours, is comprehensive,

the main focus of their paper is distant memory, the notion that agents’ reference

distribution looks back more than one period. In such settings, the law of iterated

expectations fails, and therefore the model with distant memory is time inconsistent.

Our paper focuses exclusively on linear settings with time consistency, and shows

that this baseline setup offers a number of insights useful for the NK literature. We

outline, in detail, the steps from the exact equilibrium conditions to the loglinear

approximation of medium-scale models. Our main empirical focus is evaluating the role

of diagnosticity in a rich medium-scale DSGE model with news shocks and information

frictions.

Our paper also speaks to the literature proposing deviations from the full-information

rational expectations (FIRE) hypothesis. See, for example, Mankiw and Reis (2002),

Coibion and Gorodnichenko (2015a), Angeletos, Huo, and Sastry (2020), Bordalo,

Gennaioli, Ma, and Shleifer (2020), Kohlhas and Walther (2021), among others. An-

geletos, Huo, and Sastry (2020) document delayed overreaction of beliefs in response to

business cycle shocks. Bordalo, Gennaioli, Ma, and Shleifer (2020) propose a model of

DE with dispersed information to study underreaction and overreaction in survey fore-

casts. See also Ma, Ropele, Sraer, and Thesmar (2020) and Afrouzi, Kwon, Landier,

Ma, and Thesmar (2022). In a related vein, our estimated DSGE model builds on

work exploring business cycle models where agents receive advance information about

future productivity that is subject to an information friction (Blanchard, L’Huillier,

and Lorenzoni 2013a; Chahrour and Jurado 2018).

Our paper fits into the macroeconomics literature that models departures from

rational expectations with various behavioral assumptions. Some of the recent ap-

plications have focused on resolving puzzles in New Keynesian models by introducing

behavioral assumptions. Angeletos and Lian (2018), Farhi and Werning (2019), Gabaix

(2020), and Garcia-Schmidt and Woodford (2019) are some of the papers that propose

departures from rational expectations to attenuate the strength of forward guidance.

Iovino and Sergeyev (2021) study the effectiveness of central bank balance sheet policies

with level-k thinking. Bianchi-Vimercati, Eichenbaum, and Guerreiro (2022) study the

effectiveness of fiscal policy at the zero lower bound in a model with level-k thinking.

Angeletos, Huo, and Sastry (2020, Sec. 6.4) argue that these leading departures from

rational expectations exhibit a form of under-extrapolation. In contrast, DE allow
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beliefs to generate overreaction and systematic reversals as we demonstrate. Farhi and

Werning (2020) study the role of monetary policy as a macro-prudential tool when

agents form extrapolative expectations.

Paper Organization. The paper is organized as follows. Section 2 offers an example

based on the classic demand and supply model by Muth (1961) to illustrate how

DE generate endogenous extrapolation, even with i.i.d. shocks. Section 3 presents

a general formulation and solution method for linear dynamic DE models, and offers

two examples. Section 4 presents the analytical results from a 3-equation NK model.

Section 5 presents the empirical evaluation of diagnostic expectations in a medium-scale

DSGE model. Section 6 concludes. The Appendix provides supplementary materials

and collects all the proofs.

2 Diagnostic Expectations on Endogenous Variables:

A Simple Demand and Supply Example

The goal of this section is to illustrate the novel propagation mechanism offered by

diagnostic expectations in the context of dynamic models featuring endogenous state

variables. For the purposes of providing intuition, let us reconsider one of the examples

given in the introduction. Suppose that an adverse weather event damages current

inventories of a commodity. Under DE, commodity suppliers extrapolate the effects

of the surprise decline in inventories to excessively low future supply, and hence high

prices. As a result, they over-invest in the commodity. Ex post, an excessive amount

of the commodity breeds disappointment and depressed price dynamics. This is the

type of behavior that the models in this paper capture.

In order to illustrate this mechanism, we use the classic commodity market model

suggested by Muth (1961), with the addition of imperfect commodity storage leading

to partial depreciation. Specifically, the model is the following.2 There is an isolated

market for a commodity. The commodity demand at time t, Qd
t , is a downward-sloping

function of the price Pt (model variables are denoted in deviation from steady state):

Qd
t = −βPt, β > 0 (1)

The supply side is modeled with a time-to-build assumption. Suppliers invest, one

2See Muth (1961), Section 3, pp. 317-22.
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period in advance, as a function of their expectations of the price next period:

It = γEθt [Pt+1], γ > 0 (2)

where It is the quantity invested, Eθt is the DE operator, and θ > 0 is a diagnosticity

parameter. Supply at time t+ 1, Qs
t+1, is given by

Qs
t+1 = Qt + ϵt+1 (3)

where Qt are inventories at t, given by

Qt = It + (1− δ)Qt (4)

By (4), the predetermined supply of the commodity, or inventory, is equal to the

quantity invested at time t, plus the remaining fraction of quantity at t that can be

stored away for the next period t+1. This stored quantity depreciates at rate δ ∈ (0, 1).

By (3), the quantity actually supplied is the predetermined amount subject to a shock

ϵt+1, which can be thought as weather events, or other random variation in yields.

Whereas Muth assumed that the shock is persistent, we assume instead that ϵt+1 is

i.i.d. N(0, σ2
ϵ ), which allows us to focus on the amplification through the endogenous

state Qt.
3 The market clearing condition is: Qs

t = Qd
t = Qt, which implies Pt = − 1

β
Qt.

To help intuition, we focus on the equilibrium effects of a contemporaneous negative

shock ϵt < 0. This shock reduces the supply of the commodity Qt, thereby reducing

next period inventories Qt. Consider the implication for expected future prices. By

the equilibrium condition, we have that Eθt [Pt+1] = − 1
β
Eθt [Qt+1]. A low expected future

supply of the commodity implies a high expected future price. Price expectations then

determine, according to (2), current investment and hence inventories Qt as a fixed

point.

Evidently, then, expectation formation is crucial to determine how the market reacts

to the shock ϵt < 0. In order to solve for diagnostic expectations, we apply the BGS

formula and write Eθt [Qt+1] = Et[Qt+1] + θ (Et[Qt+1]− Et−1[Qt+1]). By (3), we obtain:

Eθt [Qt+1] = Et[Qt + ϵt+1] + θ
(
Et[Qt + ϵt+1]− Et−1[Qt + ϵt+1]

)
(5)

3The reason the predetermined variable is instrumental to generate amplification via diagnosticity is that it
guarantees persistence, even with i.i.d. shocks. Of course, in more general formulations, there is additional
amplification because exogenous shocks can themselves be persistent, as in BGS. But, in this section, we focus on
the stark i.i.d. case.
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which, in turn, implies

Eθt [Qt+1] = Qt + θ
(
Qt − Et−1[Qt]

)
(6)

Diagnosticity implies that a shock affecting the predetermined variableQt today shapes

agents’ forecast for an uncertain future. According to (2), when ϵt < 0, investment It

will increase due to two distinct channels. By the first term in (6), the fall in Qt pushes

It up. This channel is present even under RE. By the second term in (6), investment

will increase further due to extrapolation of lower-than-expected current inventories

into the future (Qt − Et−1[Qt] < 0), which has a positive effect on It. The magnitude

of this second channel is governed by the diagnosticity parameter θ.

Note that equation (5) implies that the predetermined endogenous variable Qt is

not taken out of the diagnostic expectations operator, mainly Eθt [Qt+1] ̸= Qt+Eθt [ϵt+1].

This property is critical for amplification, and is founded on the cognitive influence of

associative memory on beliefs. Seeing ϵt < 0 and hence lower-than-expected invento-

ries Qt makes the investor selectively retrieve low Qt+1 in the future, over and above

the rational link between Qt+1 and Qt. Specifically, suppose that the representative

supplier has stored an exogenous baseline or reference level of the inventory stock Q
R

t

in her memory. Denote by QM
t+1 a supplier’s belief about future supply. This belief

depends on the current endogenous inventory, which acts as a memory cue. Let us de-

note such cue by Q
M

t . We then have QM
t+1 = Q

M

t +ϵMt+1, where ϵ
M
t+1 is a given resolution

of future uncertainty. By the representativeness heuristic, when thinking about QM
t+1

based on the cue Q
M

t , the supplier disproportionately retrieves future outcomes that

are more likely compared to QR
t+1 = Q

R

t + ϵMt+1. Thus, the difference Q
M

t −Q
R

t leads to

a behavioral distortion that feeds into beliefs about the future supply and hence the

price, ultimately affecting the action It. Notice that Q
M

t − Q
R

t < 0 when ϵt < 0. In

equilibrium, the cue Q
M

t coincides with the endogenously determined quantity Qt, and

the exogenous reference with its average value under past conditions:

Q
M

t = Qt (7)

Q
R

t = Et−1[Qt] (8)

This mechanism is consistent with findings from psychology and behavioral eco-

nomics, which document evidence of a wide range of distortions and inconsistencies in

the formation of beliefs under uncertainty,4 and with recent work that offers common

4See Tversky and Koehler (1994), Gonzalez and Wu (1999), Enke and Graeber (2023), Dietrich, Knotek,
Myrseth, Rich, Schoenle, and Weber (2022), among others.
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memory-based foundations for these anomalies (Gennaioli and Shleifer 2010; Kahana

2012, Ch. 4; Bordalo, Conlon, Gennaioli, Kwon, and Shleifer 2023; Enke, Schwerter,

and Zimmermann 2020). In fact, by (6), notice that

Eθt [Qt+1] ̸= Qt + Eθt [ϵt+1] (9)

This distortion holds the key to amplification through endogenous variables, and it is

triggered even in the case of i.i.d. exogenous processes.

We now show that here memory mechanisms triggered by adjustments in endoge-

nous variables amplify the actions of forward looking agents and create persistence

with i.i.d. shocks. The equilibrium consistency restrictions (7) and (8) lead to the

explicit solution for the endogenous variables.5 Equilibrium investment is given by:

It = − γ

β + γ
(1− δ)Qt −

β

β + γ

θγ(1− δ)

β + γ(1 + θ)
ϵt (10)

The dynamics of the price are given by

Pt =
β

β + γ
(1− δ)Pt−1 −

1

β
ϵt +

1

β + γ

θγ(1− δ)

β + γ(1 + θ)
ϵt−1 (11)

These expressions lead to three insights. First, in the absence of storage opportuni-

ties (δ = 1), investment is fixed at steady state (It = 0). The reason is that, with i.i.d.

shocks and no storage, the forecast of the future price is simply given by its long-run

mean. Second, for δ < 1, investment moves in the opposite direction of the shock ϵt.

As discussed above, there are two channels. There is a direct “rational” effect via the

supply Qt, captured by the first term on the right-hand side of (10). Furthermore,

there is an extrapolative effect of the current shock ϵt, implied by DE, and captured by

the second term. The latter is shut down at the RE benchmark θ = 0.6 Third, price

dynamics follow an ARMA(1,1) process. As in a rational world, θ = 0, the price is

positively correlated to the past price, but it is hit negatively by the contemporaneous

weather shock (a negative shock ϵt < 0 increasing the price Pt). Adding diagnosticity

θ > 0, though, adds a key new effect: a systematic price reversal that entails a de-

pressed price Pt+1, after a bad shock ϵt. Indeed, equation (11), one period forward,

5This solution can be obtained by a guess and verify procedure.
6Notice that, both under RE and DE, the endogenous adjustment of It goes in the opposite direction of the

exogenous shock on Qt. Under DE, the extrapolation changes the magnitude of the response of It, making it larger
than under RE. The total effect on inventories Qt preserves the direction of the initial impulse of the shock, both
under RE and DE. (This can be checked using (11) and solving explicitly for Qt.)
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Figure 1: Implications of a Negative Commodity Supply Shock
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Notes: The panels present the responses of investment It and the price Pt to a one unit negative shock ϵt. The solid and dashed lines
depict the responses under DE (θ = 5 and θ = 1), whereas the dotted lines depict responses under RE.

is:

Pt+1 =
β

β + γ
(1− δ)Pt −

1

β
ϵt+1 +

1

β + γ

θγ(1− δ)

β + γ(1 + θ)
ϵt (12)

The third term on the right-hand side of (12) tells us that the shock ϵt < 0 makes

Pt+1 go down compared to RE. To understand this price reversal, consider the in-

vestment equation (10) and the extrapolative effect due to diagnosticity. Because of

over-investment when a negative shock ϵt < 0 hits, the market is glutted with an

excessively high quantity of the commodity. This reversal is neglected by diagnostic

agents. This also implies that the rosy price expectations of diagnostic suppliers are

disappointed, with the price falling below the prevailing price in the RE economy. The

discrepancy from time t expectations is systematic and predictable, since it depends

purely on the past shock. Also, due to the AR component of the equilibrium price

process (12) when δ < 1, this reversal is persistent.

We illustrate these dynamics in Figure 1.7 Following the negative shock, both

investment and the price rise. However, under DE, investment overreacts on impact,

and then rapidly reverts (already at t = 2) to a level that is below the RE response.

This ‘overreaction-and-systematic-reversal’ pattern is more dramatic the higher the

value of θ. Due to over-investment, the price is depressed (below the RE benchmark)

from t = 2 onwards. The economy gradually returns to steady state as inventories

recover from the shock (not plotted).

As in this example, throughout the paper we use the property that innovations

to predetermined variables generate cues that distort the forecasts of future states.

7For illustration, we set θ = 1 or θ = 5, δ = 0.10, and γ = β = 1.
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We label this property endogenous extrapolation. As just illustrated, this property is

important and can give rise to excess volatility and reversals. Given that endogenous

states are ubiquitous in DSGEs models, due to the presence of predetermined variables

such as capital, inflation, or consumption habits, this property of DE is attractive to

obtain amplification in these models.

3 Solution Method

We present a solution method for a general class of linear models. Agents use diag-

nostic expectations to form beliefs about the evolution of all variables, exogenous and

endogenous. Our strategy consists in obtaining a rational expectations (RE) represen-

tation of the diagnostic expectations (DE) model. Based on this step, the model can

be solved using standard techniques.

3.1 General Formulation and Rational Expectations Repre-

sentation

3.1.1 Exogenous Processes

We start by specifying the exogenous drivers of the economy. Exogenous variables

are stacked in a (n × 1) vector xt that is assumed to follow the multivariate AR(1)

stochastic process

xt = Axt−1 + vt (13)

where vt is a (k×1) vector of Normal and orthogonal exogenous shocks, vt ∼ N(0,Σv),

and A is a diagonal matrix of persistence parameters. Since vector xt+1 follows

a multivariate normal distribution, we can write its true (or non-distorted) pdf as

f(xt+1|xt) ∝ φ((xt+1−Axt)
′Σ−1

v (xt+1−Axt)), where φ(x) is the density of a standard

normal distribution, φ(x) = 1√
2π
e−

1
2
x2 .

3.1.2 Diagnostic Expectations

Extending the approach by Bordalo, Gennaioli, and Shleifer (2018) (henceforth BGS),

the multivariate diagnostic distribution of xt+1 is defined as

f θt (xt+1) = f(xt+1|Gt) ·
[
f(xt+1|Gt)

f(xt+1| −Gt)

]θ
· C (14)
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where Gt and −Gt are conditioning events. Gt encodes current conditions: Gt ≡
{xt = x̌t}, where x̌t denotes the realization of xt. −Gt encodes a reference group (i.e.

a reference event), that is used to compute the reference distribution f(xt+1|−Gt). Due

to the representativeness heuristic, agents overweight the last realization of xt (relative

to the reference group) when forming beliefs about the future realization of xt+1. The

likelihood ratio f(xt+1|Gt)/f(xt+1| − Gt) distorts beliefs to a degree governed by the

diagnosticity parameter θ ≥ 0. C is a constant ensuring that f θt (xt+1) integrates to 1.

Following BGS, we impose that, in the presence of uncertainty about xt+1, the

reference event −Gt carries “no news” at time t (henceforth no-news assumption or

NNA).

Assumption 1 (Multivariate No-News Assumption)

f(xt+1| −Gt) = f(xt+1|xt = Ax̌t−1) (15)

We make Assumption 1 throughout the paper. To understand the meaning of this

assumption, consider an agent forming beliefs about future xt+1. Under the NNA, these

beliefs are formed conditional on the event that the random variable xt, conditional

on the past realization x̌t−1, is what it was expected to be, so vt = E[vt] = 0, which is

equivalent to xt = Ax̌t−1. The diagnostic distribution is thus written as

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = Ax̌t−1)

]θ
· C (16)

Notice that the distribution (16) is conditional on two elements: first, it is conditional

on the current realization of xt, written x̌t, because this enters the true distribution

of xt+1; second, it is conditional on the reference event −Gt ≡ {xt = Ax̌t−1}, which
depends on the realization at t− 1, x̌t−1.

Extending the definition of BGS to the multivariate normal vector xt+1, the DE is

the expectation, element by element, under the density (16). We write this expectation

as Eθt [xt+1].
8 Using a multivariate version of Proposition 1 in BGS, we obtain the

formula9

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (17)

8The diagnostic distribution depends on two separate information sets, Gt and G−t, drawing information avail-
able at dates t and t− 1. So, one could denote it by Eθt,t−1. However, to avoid confusion, we prefer to stick to the
notation used in BGS and the surrounding literature. Similarly, when denoting the RE operator Et, the subindex
indicates the date at which the expectation is taken (in which case it coincides with the information set’s date.)

9See Lemma 2 in the appendix.
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3.1.3 Stochastic Difference Equation

The class of forward-looking models we analyze is written as a stochastic difference

equation. Uncertainty is modeled under the diagnostic distribution (16). Let yt denote

a (m× 1) vector of endogenous variables (including jump variables and states) and xt,

as above, denote the (n× 1) vector of exogenous states. The model is:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] +G2yt +Hyt−1 +N2xt = 0 (18)

where F, G1, G2, M, N1, N2, and H, are matrices of parameters. F, G1, G2, and H

are (m×m) matrices, N1 and N2 are (m× n) matrices. This diagnostic expectation

is taken over the diagnostic density of Fyt+1 +G1yt +Mxt+1 +N1xt. For generality,

in equation (18), we specify current variables both inside the diagnostic expectations

operator in linear combination with future variables (e.g. N1xt) as well as outside the

expectations operator (e.g. N2xt).
10 Such expressions can arise due to the presence of

exogenous persistent states xt or predetermined variables yt.

3.1.4 Solution Procedure

The remaining steps are as follows. First, postulate a form for the solution. Second,

determine how to handle the diagnostic expectation Eθt [Fyt+1+G1yt+Mxt+1+N1xt],

which is a linear combination of endogenous and exogenous variables, some of which

are future, and some of which are current (known at time t). Third, obtain a rational

expectations representation of the model. Fourth, solve for the model expressed in

terms of rational expectations using standard tools (as the method of undetermined

coefficients, for instance).

Form of the Solution. We look for a solution of the form

yt = Pyt−1 +Qxt +Rvt (19)

We make this guess based on the behavioral properties afforded by DE. In the context

of RE models, the correct conjecture is of the form yt = Pyt−1 +Qxt. As shown by

BGS, DE generate overreaction in the context of exogenous processes. We allow for

this possibility in the context of the endogenous dynamics of yt using the extra term

Rvt.

10After loglinearization we will encounter expressions of this form. Throughout the paper we present a few
examples to make this point concrete.
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Diagnostic Expectation of Linear Combinations of Endogenous and Exoge-

nous Variables. Under (19), yt+1 follows a multivariate normal distribution. Since

the vector of exogenous drivers xt+1 also follows a multivariate normal distribution, we

know that the linear combination Fyt+1 + G1yt + Mxt+1 + N1xt is also distributed

following a multivariate normal density. This Gaussian property is the key to the

solution to the model. Using (17), it allows us to express the diagnostic expecta-

tion Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] in terms of the RE operator Et. Indeed, the

expression for the DE present in model (18) can be expressed as:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

+θ
(
Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

−Et−1[Fyt+1 +G1yt +Mxt+1 +N1xt]
)

(20)

We are now in a position to obtain the representation of the model in terms of

rational expectations.

Proposition 1 (Multivariate Rational Expectations Representation) Under the

multivariate NNA, model (18) admits the following RE representation:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)
+Mθ

(
Et[xt+1]− Et−1[xt+1]

)
+G1θ

(
yt − Et−1[yt]

)
+N1θ

(
xt − Et−1[xt]

)
= 0 (21)

where G = G1 +G2 and N = N1 +N2. Moreover, this representation is unique.

The proof of this result is based on equality (20), together with the additivity

property of the RE expectations operator.

Solution. Armed with this representation, we verify that equation (19) indeed con-

stitutes a solution. See the appendix for the details.

Belief Distortions and Predetermined Variables. Notice that a key step in

arriving at the RE representation has the feature that we already discussed in Section 2.

The vectors of predetermined variables xt and yt undergo a diagnostic transformation

in equation (20), since expectations are taken over a linear combination involving future
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variables. Innovations to the current states (exogenous or endogenous) give rise to a

cue-dependence that distorts expectations. Hence, current variables cannot be taken

out of the DE operator in (18).

This does not mean that if the agent were to be asked, at date t, about their

expectation of xt or yt in isolation, they would respond something different than xt

or yt. Instead, when the expectation of xt or yt is evaluated in linear combination

with future variables, the presence of uncertainty about future outcomes activates

diagnosticity in the mind of the agent.

The fact that uncertainty activates diagnosticity could result in behavioral inconsis-

tencies in the limiting case when uncertainty disappears. For example, yt = Eθt [yt] =
Eθt [yt + yt+1 − yt+1], even though the last term evaluates expectations over a linear

combination involving future variables.11 In such a limiting case, the agent does not

overweight, in the true distribution of yt, any specific outcomes that could lead to a

distortion. In reality, of course, matters are more subtle. Because memory is limited

(Kahana 2012), even if a variable is predetermined and the agent has observed its

realization, when trying to recall its value, the agent can make mistakes that depend

on the selectivity of memory. With limited memory, beliefs may be distorted not only

about future outcomes, but also about past ones. For instance, in the example of Sec-

tion 2, where agents form beliefs about Qt+1 = Qt + ϵt+1, there might be a behavioral

instability depending on the framing of the question. When asked about their beliefs

about Qt, an agent may have no trouble stating an unbiased response. However, when

asked about their beliefs about Qt+1, the agent may report a number that is inconsis-

tent with reporting Qt in the former question. There is a large body of evidence of

inconsistencies of this sort in peoples’ expectations. For instance, Dietrich et al. (2022)

show how expectations about aggregate inflation are inconsistent with expectations at

the good subcategory levels. See also Tversky and Koehler (1994), Enke and Graeber

(2023), among others.

3.2 Examples: Endogenous Extrapolation, Stability and Bound-

edness of the Solution, Loglinearization

In order to economize on technical material, we use two examples to discuss two re-

maining issues pertaining to the solution method of DSGE models under DE. Example

1 discusses the stability and boundedness properties of the DE solution. Example 2

11Bianchi, Ilut, and Saijo (2022, Appendix D) explain that a researcher needs to verify whether there is residual
uncertainty inside the expectations operator or not before computing the expectations.
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discusses the loglinearization of DE models.12 Moreover, these two examples are useful

to further illustrate the recurrent theme of how DE generate endogenous extrapolation

in models with predetermined variables.

3.2.1 Example 1: Univariate Endogenous State Variable Model

The main purpose of this example is to further illustrate the endogenous extrapolation

property introduced in Section 2. When DE are taken over exogenous variables, there

is no extrapolation if shocks are i.i.d. There is in fact an equivalence between RE and

DE. To see this, consider an i.i.d. white noise process ηt, and compute Eθt [ηt+1]. A

simple calculation using formula (17) shows that RE and DE are equivalent in this case.

Instead, in the context of DE over endogenous variables, state variables can activate

extrapolation even when shocks are i.i.d.. This is due to the presence of predetermined

variables. Modeling diagnostic expectations on endogenous variables offers a novel and

internal propagation mechanism for DSGE models.

Consider the following model:

yt = aEθt [yt+1] + cyt−1 + εt (22)

where |a+ c| < 1 and εt is white noise.13

The solution of the RE model (θ = 0) can be derived analytically using the minimum

state variable solution method:

yt = ϕ1yt−1 +
1

1− aϕ1

εt (23)

where ϕ1 ≡ 1−
√
1−4ac
2a

.14 Under DE, the minimum state variable solution is given by

yt = ϕ1yt−1 +
1

1− (1 + θ)aϕ1

εt (24)

Notice from equation (24) that computing the DE over the endogenous variable yt+1

delivers extrapolation and amplification, even though the exogenous process is i.i.d.

To see this, notice that since 1− aϕ1 > 0, for small enough θ (more on this below), a

positive shock εt generates an overreaction of yt.

12The appendix presents a thorough technical discussion of these aspects.
13This equation can be microfounded with a standard intertemporal consumer problem subject to external habits

in consumption. εt can be interpreted as a taste shock.
14Specifically, using the method of undetermined coefficients, we get the following requirement: ϕ1 = aϕ21 + c.

Imposing that ϕ1 → 0 as c→ 0, we arrive at the solution. |a+ c| < 1 ensures that the model is stable in the sense
of Proposition 5 and that the RE solution is bounded.
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Figure 2: Amplification in the Univariate Model

yt+1

yt

yt+1 = ϕ1yt

yt = aEt[yt+1] + εt

yt = aEθt [yt+1] + εt

To get intuition, consider Figure 2. On the (yt+1, yt) plane, we plot the form of

the solution, yt+1 = ϕ1yt (dotted line) and the forward-looking reaction functions

yt = aEθt [yt+1] + εt (solid line) and yt = aEt[yt+1] + εt (dashed line). We assume

the economy is in steady state before the shock, and thus yt−1 = 0. Under RE, the

reaction function collapses to yt = ayt+1 + εt. Under DE, the reaction function is,

instead, yt = a(1+ θ)yt+1 + εt. The intersection of the dotted line with either reaction

function (RE or DE) gives the solution. Because of extrapolation, the reaction function

is steeper under DE, signifying the higher expectation of yt+1 in the mind of the agent.

This extrapolation is the source of amplification at date t.15

Finally, both the DE and RE solutions are dynamically stable since ϕ1 < 1. In

fact, this is a general property. The stability conditions are identical for both models.

Furthermore, the solution to the RE model is bounded since 1 − aϕ1 > 0. However,

notice that the denominator in (24), 1 − (1 + θ)aϕ1, can be zero. Therefore, the

DE solution becomes unbounded as θ approaches 1
aϕ1

− 1, despite the existence of a

bounded RE solution. In all our applications, we verify that the values of θ that lead

to unboundedness are always fairly large and away from any admissible range.

3.2.2 Example 2: Nominal Euler Equation

Consider the following Euler equation of a nominal economy:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
(25)

15In other words: Given the solution yt+1 = ϕ1yt + 1/(1 − (1 + θ)aϕ1)εt+1, computing Eθt [yt+1] delivers
ϕ1 (yt + θ(yt − Et−1[yt])), and so we see that, again, Eθt [yt+1] ̸= ϕ1yt + Eθt [1/(1 − (1 + θ)aϕ1)εt+1]. This is the
distortion that generates amplification.
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where Ct is consumption, Pt is the price level, it is the nominal rate, u(·) = log(·) is
period utility, and β is the discount factor.16

Loglinearizing (25), we obtain:

ĉt = Eθt [ĉt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (26)

where {ĉt, ît, p̂t} denote loglinear deviations of consumption and the interest rate from

their respective steady states, and of the price level from an initial price level, respec-

tively. In order to obtain an expression involving inflation instead of the price level,

recognize that the future price level is given by

p̂t+1 = p̂t + π̂t+1 (27)

where π̂t+1 is the inflation rate from t to t + 1. Using the BGS formula (17) on p̂t+1

and algebraic manipulation delivers the loglinear diagnostic Euler equation17

ĉt = Eθt [ĉt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) (28)

Notice the term θ(π̂t − Et−1[π̂t]) that enters in the evaluation of the real rate of

interest. This term arises due to endogenous extrapolation, whereby the diagnostic

agent extrapolates innovations to current inflation, impacting beliefs about future in-

flation. The intuition for this distortion is the same as the one given in Section 2, and

in the previous example. The presence of the current price level as a predetermined

variable in (27) generates endogenous extrapolation, since Eθt [p̂t+1] ̸= p̂t + Eθt [π̂t+1].

When π̂t−Et−1[π̂t] > 0, this channel induces an expansionary channel by reducing the

subjective real rate computed by diagnostic agents. This effect is present even in the

case of i.i.d. shocks, once again underscoring the novelty of computing DE on endoge-

nous variables. We exploit this channel in Section 4 by emphasizing its implications

for fiscal policy.18

16Section 4 derives this equation from first principles. Following BGS, the diagnostic distribution for non-linear
processes is also defined as a distorted likelihood that over-weights states representative of recent news. We provide
a formal definition in Appendix C.

17See Appendix C for the derivation.
18More generally, this example highlights that predetermined variables cannot be taken in and out of the DE

expectation operator in order to obtain the correct loglinear approximation of DSGE models under DE.
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3.3 A Practical Guide to the Implementation of Diagnostic

Expectations in DSGE Models

We conclude this section with the following summary. A researcher interested in using

diagnostic expectations within a DSGE model can take the following steps.

1. Obtain the exact equilibrium conditions of the model. (Section 4 provides an

example in the context of a 3-equation NK model, and Section 5 in the context

of a medium-scale DSGE model.)

2. Loglinearize the model, being careful not to introduce current variables in and

out of the DE operator. (See the appendix for examples.)

3. Obtain the RE representation of the model (Proposition 1).

4. Solve the RE model based on a software package that can handle expectations

conditional on previous period’s information set (Et−1).

5. Check that the set of parameter values considered does not cover bifurcation

points (Example 1).

4 Analysis Using a New Keynesian Model

In this section, we derive a three-equation New Keynesian model augmented by di-

agnostic expectations. Our goal is to revisit a number of prominent themes in this

context.

4.1 Diagnostic New Keynesian Model

We set up the model from first principles. There are three sets of agents in the economy:

households, firms and the government.

4.1.1 Households

Households maximize the following lifetime utility

logCt −
ω

1 + ν
L1+ν
t + Eθt

[
Σ∞
s=t+1β

s−t
(
log(Cs)−

ω

1 + ν
L1+ν
s

)]
(29)

where Lt is labor supply, ν > 0 is the inverse of the Frisch elasticity of labor supply,

β is the discount factor β, satisfying 0 < β < 1, ω > 0 is a parameter that pins down
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the steady-state level of hours. Maximization is subject to a budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt (30)

where Pt is the price level, Bt+1 is the demand of nominal bonds that pay off 1 + it

interest rate in the following period, Wt is the wage, Dt and Tt are dividends from

firm-ownership and lump-sum government transfers, respectively.19

4.1.2 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods’ demand is given by Yt(j) =
(
Pt(j)
Pt

)−ϵp
Yt, where

ϵp > 1 is the elasticity of substitution, Pt(j) is the price of intermediate good j, and Pt

is the price of final good Yt. Each intermediate good is produced using the technology

Yt(j) = AtLt(j), where ât ≡ log(At) is an aggregate TFP process that follows an AR(1)

process with persistence coefficient ρa:

ât = ρaât−1 + εa,t (31)

and εa,t ∼ iid N(0, σ2
a). The firm pays a quadratic adjustment cost ψp

2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt,

in units of the final good (Rotemberg 1982) to adjust prices. Firms’ per period profits

are given by Dt ≡ Pt(j)Yt(j) − WtLt(j) − ψp

2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt. The firm’s profit

maximization problem is

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}
(32)

where Qt,t+s is the household’s nominal stochastic discount factor.

4.1.3 Government

The government sets nominal interest rate with the following rule 1 + it = (1 +

iss)Π
ϕπ
t

(
Yt
Y ∗
t

)ϕx
, where Y ∗

t = At is the natural rate allocation, iss = 1
β
− 1 is the

steady state nominal interest rate, ϕπ ≥ 0, ϕx ≥ 0, and steady state gross inflation

19The reader may wonder whether DE introduces time inconsistency. This is not the case in the loglinear
approximation when the reference distribution is based on t − 1. See Bianchi et al. (2022) for an in-depth
discussion of cases where DE lead to time inconsistency.
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Π = 1. Total output produced is equal to household consumption expenditure and

adjustment costs spent when adjusting prices. We first consider a model where is no

government spending, and nominal bonds are in zero net supply.

4.1.4 Equilibrium

Appendix C presents the equilibrium conditions. In particular, it shows that the

household intertemporal first order condition is equation (25). This appendix also

goes over the log-linear approximation in detail. The resulting equilibrium is given by

the following four equations:

ĉt = Eθt [ĉt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (33)

π̂t = βEθt [π̂t+1] + κ̃(ĉt − ât) + κ̃ν(ŷt − ât) (34)

ît = ϕππ̂t + ϕx(ŷt − ât) (35)

ĉt = ŷt (36)

where κ̃ ≡ ϵp−1

ψp
, ŷt, ĉt, p̂t, ît are the log deviation of output, consumption, the price

level, and the nominal interest rate respectively, and π̂t is the log deviation of inflation

from the zero-inflation steady state. The shock process is given by:

ât = ρaât−1 + εa,t (37)

where εa,t ∼ i.i.d. N(0, σ2
a).

As explain in the context of Example 2 in Section 3, equation (33) can be written

as (28), showing that DE change the expression for the approximated Euler equation

by introducing a current inflation surprise term.

We provide an explicit solution for the model in Appendix C.20

4.2 Diagnostic Expectations and the Possibility of Extra Am-

plification

A classic challenge in macroeconomic modeling is finding ways to generate realistic

business cycles with shocks of moderate size. The literature has relied on multiple

types of frictions (e.g. nominal, as in Christiano, Eichenbaum, and Evans 2005, or

financial, as in Bernanke and Gertler 1989; Kiyotaki and Moore 1997), interactions in

the form of strong complementarities (Benhabib and Farmer 1994), or multiple shocks

20We assume that the determinacy and boundedness conditions are satisfied.
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(Smets and Wouters 2007b) to fit the data.

We demonstrate that diagnosticity provides a viable behavioral alternative to un-

derstand the large size of observed fluctuations within the NK model. Because di-

agnosticity leads agents to extrapolate the impact of exogenous shocks, expectations

are more volatile. Intuitively, one would expect the DE-NK model to predict a higher

volatility of output than under RE. Indeed, the following proposition establishes that

diagnosticity can generate extra endogenous volatility in the NK model. We analyti-

cally prove this result when prices are completely rigid (ψp → ∞).21

Proposition 2 (Extra Volatility: NK Model) Consider the model given by (33)-

(37). When ψp → ∞ (rigid prices), output is more volatile under DE than under RE :

V ar(ŷDEt ) > V ar(ŷREt ). When ψp → 0 (flexible prices), output volatility under DE is

equal to that under RE.

In the flexible price limit, we obtain the efficient benchmark where output volatility

is equal to the stationary TFP process volatility. In the perfectly rigid price case,

diagnosticity interacts with price rigidity to amplify fluctuations in output whenever

θ > 0. In the intermediate range, we numerically illustrate how excess volatility under

DE varies with the degree of price rigidity, parameterized by κ ≡ (1 + ν)κ̃. Our

default calibration of the NK model is based on the textbook by Gaĺı (2015).22 θ is set

to 1 following Bordalo, Gennaioli, Shleifer, and Terry (2021). We obtain a standard

deviation of output of 2.96%, relative to 1.82% under RE. Thus, output volatility

increases by 63% due to DE.

DE interact with the nominal frictions embedded in the NK model in order to gen-

erate extra output volatility. Figure 3 plots the excess volatility under DE relative to

RE as a function of κ plotted on the x-axis, for different values of θ. κ is inversely

related to ψp, the adjustment cost parameter. Given the default calibration, DE gen-

erates highest excess volatility relative to RE when prices are perfectly rigid. Excess

volatility monotonically declines as prices become flexible.23 In the flexible price limit,

the excess volatility converges to zero. Also, the excess volatility is increasing in the

diagnosticity parameter.

In order to further demonstrate the interaction of nominal rigidities with diagnos-

21Away from this limit, we can use the solution of the model presented in the appendix and obtain a condition
for extra volatility, but this condition is messy and does not lend itself to any clear interpretation.

22We set β = 0.99, ϵp = 9, ϕπ = 1.50, and ϕx = 0.5. We set ν = 2, and ψp such that κ = 0.050. The TFP
process is calibrated with persistence 0.90 and standard deviation of 2%.

23It is possible to get lower volatility of output under DE relative to RE for different parameter configurations.
For example, when persistence of the TFP process ρa = 0.1, κ = 1, and θ = 1, we obtain dampening of output
volatility under DE relative to under RE.
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Figure 3: Excess Volatility under DE, Baseline NK Model
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Notes: The figure presents percentage points of volatility under DE relative to RE as a function of the slope of Phillips curve, κ, and
for various values of diagnosticity parameter, θ. The model is given by equations (33)-(37). See Footnote 22 for the default calibration.

ticity, we consider the case of a frictionless real business cycle (RBC) model. The

model is standard and is provided in Appendix D. There, we analytically show that

output is less volatile under DE than under RE when there is full depreciation of cap-

ital (δ = 1) and TFP shock process has zero persistence (ρa = 0). For a calibration

away from these analytical assumptions, we find that the standard deviation of output

is lower under DE than under RE.

To shed light on these results, it is useful to draw a parallel to the news shocks

literature originating in the seminal work by Beaudry and Portier (2004) and Beaudry

and Portier (2006). The addition of DE to the NK model can be seen as a way of

generating errors in expectations that resemble news about the future. For instance,

in the case of a positive TFP shock, agents extrapolate this shock, expecting a further

positive TFP shock in the next period. Therefore, the TFP shock generates a con-

temporaneous raise in TFP, and an excessive increase in expectations about TFP in

the next period. Shocks to expectations can be seen as shifts in aggregate demand.

Whether aggregate demand can move away from aggregate supply depends on the

degree of nominal rigidities. When prices are sticky, output is demand determined:

The positive income effect raises consumption and in general equilibrium this effect

dominates. Output ultimately increases. This explains the extra volatility afforded by

the DE-NK model.24 Similarly, in the presence of capital, shocks to expectations also

face difficulties in generating comovement in a baseline, frictionless, RBC model with

24To be clear, we use this parallel to news shocks only for the purposes of providing intuition. In fact, compared
to news shocks, DE generate novel and different effects. Section 5 expands more on this point.

23



flexible prices (Beaudry and Portier 2006; Jaimovich and Rebelo 2009). Indeed, in the

case of a positive news shock, the implied income effect produces a fall of labor supply

and hence output (Barro and King 1984). However, as shown in Blanchard, L’Huillier,

and Lorenzoni (2013a), nominal rigidities are also a solution to this counterfactual

prediction of the RBC model. Indeed, we return to this property of DE in the case of

an estimated medium-scale DSGE models.25

4.3 Keynesian Supply Shocks

Motivated by economic crisis caused by the COVID-19 pandemic, a rapidly growing

literature focuses on constructing models that have the ability to generate a demand

shortfall that is fundamentally caused by a disruption on the supply side of the econ-

omy, that is, a ‘Keynesian’ supply shock. Thus far, some of the candidate explana-

tions for this phenomenon include multiple consumption goods (Guerrieri, Lorenzoni,

Straub, and Werning 2022), endogenous firm-entry (Bilbiie and Melitz 2022), het-

erogenous risk-tolerance (Caballero and Simsek 2021), and endogenous TFP growth

(Fornaro and Wolf 2022). As the following proposition shows, DE present a behavioral

mechanism capable of producing Keynesian supply shocks.

Proposition 3 (Keynesian Supply Shocks) Consider the model given by (33)-(37).

Assume that ψp → ∞ and that the diagnosticity parameter is high enough, that is,

θ > 2(1 − ρa)(1 + ϕx)/(ϕxρa). Then, the output gap x̂t positively co-moves with the

unanticipated component of TFP: ∂x̂t
∂εa,t

> 0.

Similar to Proposition 2, the proposition imposes completely rigid prices for tractabil-

ity. The result extends to the case of moderately rigid prices, as Figure 4 shows. We

use same default calibration presented above. The figure plots the evolution of the

output gap. Following a negative TFP shock, the economy enters a recession: the

output gap falls under DE. In the RE case, the output gap moves in the opposite

direction.

The key to this striking result is extrapolation: following the shock, agents extrap-

olate and become excessively pessimistic about future output. This leads to a large

drop in consumption, which due to nominal rigidities, leads to contemporaneous fall

in output. Due to diagnosticity, expectations become sufficiently pessimistic to induce

25The recent important paper by Bordalo, Gennaioli, Shleifer, and Terry (2021) presents another case in which
DE interact with frictions to generate extra volatility. The paper looks at an RBC model with financial frictions on
the firm side. Firms are heterogeneous. The paper shows that the interaction of firms’ expectations with financial
frictions successfully generate amplification of investment and output dynamics, and fits a number of facts relating
to credit cycles.
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Figure 4: Output Gap Response to a Negative TFP Shock, Baseline NK Model
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Notes: The figure depicts the impulse response of the output gap to a unit negative shock to TFP. The productivity shock process is
given by equation (37). The solid line denote impulses responses with diagnostic expectations, whereas the dotted line denote responses
with rational expectations. The dynamics of employment are exactly the same as the output gap.

a fall in output larger than the initial drop in TFP, generating a Keynesian recession.

This is in contrast to the result under RE where the fall in TFP, being only transitory,

does not lead to a fall in aggregate demand. Hence, there is a boom: lower TFP for

the same level of aggregate demand increases the demand for labor; this generates a

boom in the labor market, together with a rise in the output gap.

A noteworthy result, following BGS, is that there is a systematic reversal of the

output gap. The extrapolation of the current shock turns out to be incorrect under DE.

Following a negative shock, agents become pessimistic and the output gap becomes

negative. Next period, the excess pessimism subsides and the output gap is corrected

upwards. Output gap forecast errors are predictable: diagnostic forecasts neglect the

systematic reversal of the output gap.

4.4 Fiscal Policy Multiplier

Here we address the implications of DE for the size of the fiscal policy multiplier.

There are two reasons to do this.

First, given the recent unprecedented fiscal response to the COVID-19 crisis in the

U.S. and other countries, understanding the effects of fiscal policy is central. Also,

substantial empirical evidence indicates that marginal propensities to consume are

large (see Fagereng, Holm, and Natvik 2021, among others), or similarly, that fiscal

multipliers are large in the cross section (Nakamura and Steinsson 2014).26 We show

that DE constitute a useful addition to the NK framework, because it generates novel,

rich implications for the fiscal multiplier.

26See Steinsson (2021) for a similar discussion.
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Second, this exercise is a natural path for understanding the endogenous extrap-

olation generated by the diagnostic Fisher equation embedded in equation (25), as

explained in Example 2, Section 3.

We add government spending shocks to the NK model. There is a balanced bud-

get government spending financed by lump-sum taxes. Now, the total output in the

economy is used for consumption and government expenditure. That is, we replace

equation (36) with:

ŷt = ĉt + ĝt (38)

where ĝt is the percentage change of government spending from its steady state as

fraction of steady state output. ĝt follows an exogenous process:

ĝt = ρgĝt−1 + εg,t (39)

where εg,t ∼ iid N(0, σ2
g). The equilibrium is given by equations (33), (34), (35), and

(38), for a given process (39).

For convenience, we write the diagnostic Fisher equation here:

r̂t = ît − Et[π̂t+1]− θ(Et[π̂t+1]− Et−1[π̂t+1])− θ(π̂t − Et−1[π̂t]) (40)

Extrapolation implied by DE reduces the real interest rate, and hence leads to higher

multipliers. To isolate the implications of endogenous extrapolation, we look at i.i.d.

government spending shocks. We obtain the following proposition.

Proposition 4 (Fiscal Policy Multiplier) Consider the model given by equations

(33), (34), (35), (38), and (39). Assume that ϕx = 0 and that the persistence of the

shock ρg = 0. Then:

1. Under rational expectations, the fiscal policy multiplier is always strictly less than

1. Under diagnostic expectations, the fiscal policy multiplier is greater than 1 if

θ > ϕπ, and less than 1 if θ < ϕπ.

2. The fiscal policy multiplier is greater under diagnostic expectations than under

rational expectations.

3. The fiscal policy multiplier is increasing in θ, and tends to infinity as θ −→
ϕπ + κ−1.

Hence, when the degree of diagnosticity is above the reaction parameter of the mon-

etary authority, the multiplier is greater than one. The intuition for this result is as

follows. The diagnostic real rate moves, in response to current inflation, due to the
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endogenous extrapolation (governed by θ), and by the response of the central bank. In

the RE benchmark, the multiplier is always smaller than 1 because the central bank

moves the nominal rate to dampen the effect of fiscal policy. The condition θ > ϕπ

ensures that endogenous extrapolation offsets this dampening.

The degree of diagnosticity parametrizes the multiplier, increasing it above the RE

multiplier, and spanning the full range of values to infinity. We assume that ϕx = 0 in

order to get a clean and easy to interpret condition such that the multiplier is greater

than 1 in the DE model.27

This analytical case highlights that the higher multiplier under DE is only work-

ing through the term θ(π̂t − Et−1[π̂t]) in the diagnostic Fisher equation. Given that

the shock is i.i.d., θ(Et[π̂t+1] − Et−1[π̂t+1]) is zero. Extrapolation is purely endoge-

nous, working through the extrapolation of current innovations to inflation, thereby

generating the expansionary effect discussed in Example 2 above.

We move away from the default calibration to illustrate the results in the case

ϕx = 0. In order to illustrate a case where the multiplier is greater than 1, we consider

a dovish interest rate rule (ϕπ = 1.1) and a moderately higher diagnosticity parameter

of θ = 1.5. Using a persistence of the government shock equal to 0.5 generates a DE

multiplier of 1.04, and an RE multiplier of 0.91. Raising the diagnosticity parameter

slightly generates much larger multipliers. Furthermore, using a steeper Phillips curve

(say, κ = 0.20) strengthens the endogenous inflation extrapolation channel: the DE

multiplier is now 1.13, for an RE multiplier of 0.73.

We conclude this section by noting that DE do not always lead to higher multipliers.

When government shocks are persistent, exogenous extrapolation kicks in. The expec-

tation of future spending crowds out current consumption, reducing output. With DE,

expectations of future spending are exaggerated, and can considerably reduce multipli-

ers when persistence is high. To illustrate this, we go back to our default calibration.

In addition, we set the persistence of the shock to 0.9. In this case, the RE multiplier

is 0.17, for a DE multiplier of -0.32. In this simulation, the exogenous extrapolation

channel is so strong that it dominates the endogenous extrapolation channel, leading

to a negative multiplier.

5 Empirical Evaluation

Given the theoretical findings of the previous sections, we undertake an empirical eval-

uation of diagnostic expectations using standard structural methods. The primary

27The general condition is θ ≥ ϕπ + ϕx

(1−ψ)κ .
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goal is to ask the following question. Consider a baseline, medium scale, rational ex-

pectations DSGE model. Replace rational expectations with diagnostic expectations.

(The diagnostic model nests the rational expectations model via the diagnosticity pa-

rameter.) Is there evidence that diagnostic expectations improve the ability of the

DSGE model to fit business cycle data?

With this formulation of the broad question that guides our empirical investigation,

four interrelated subquestions emerge: What is the estimated value of the diagnosticity

parameter? Does the credible interval span the RE limit? Ultimately, is there statisti-

cal evidence that diagnosticity provides an advantage when fitting business cycle data?

If so, what changes in the interpretation of the data?

Given the recent interest in the literature on survey data (see Bordalo, Gennaioli,

Ma, and Shleifer 2020, Coibion and Gorodnichenko 2015b, among others), we include

five survey forecast series from the Survey of Professional Forecasters (SPF) among the

set of observable variables. The goal is to use these data to discipline belief formation

in the estimated model. Recently, Milani and Rajbhandari (2020) and Miyamoto and

Nguyen (2020) have shown that DSGE models featuring news shocks can fit SPF

data.28 Hence, we also include news and noise shocks in the estimation, based on the

specification by Blanchard, L’Huillier, and Lorenzoni (2013a) (henceforth BLL). In

model evaluation, Chahrour and Jurado (2018) find BLL to be the best candidate for

fitting the data with shocks to rational expectations, such as news or noise.29

Thus, we highlight that our empirical exercise is disciplined by the addition of a

host of ingredients in the baseline model: a rich set of frictions, shocks and competing

channels. This includes the frictions introduced in the seminal work by Christiano,

Eichenbaum, and Evans (2005). We include the exogenous driving processes intro-

duced by Smets and Wouters (2007b). We include news shocks as an alternative

channel to explain expectations. We include information frictions in the form of noise

shocks (included in the news and noise specification by BLL). By adding all these

bells and whistles (nominal, real, and information frictions), driving processes, and

the alternative expectation channel, we aim to perform a tough test of the usefulness

of the behavioral friction embodied by diagnostic expectations. Indeed, we want to

assess whether it provides a significant empirical advantage, even when all the other

commonly used ingredients have been included.

28Related work by the Federal Reserve Bank of New York has included data on inflation and Federal Funds Rate
expectations in DSGE estimation (Del Negro et al. 2013).

29“News and noise” models of belief-driven fluctuations are models where rational agents receive noisy advance
information about fundamental shocks hitting the economy.
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5.1 Medium-Scale DSGE Model

Since the model is standard (Christiano, Eichenbaum, and Evans 2005), we describe

here its main ingredients and relegate the details to the appendix. The preferences of

the representative household feature habit formation and differentiated labor supply.

The capital stock is owned and rented by the representative household, and the capital

accumulation features a quadratic adjustment cost in investment, as introduced by

Christiano et al. (2005). The model features variable capacity utilization.

The final good is a Dixit-Stiglitz aggregate of a continuum of intermediate goods,

produced by monopolistic competitive firms, with Rotemberg (1982) costs of price

adjustment. Similarly, specialized labor services are supplied under monopolistic com-

petition, with Rotemberg (1982) costs of nominal wage adjustment. The monetary

authority sets the nominal interest rate following an inertial Taylor rule.

The model features eight persistent structural shocks: shocks to temporary and

permanent productivity, a noise shock to the signal about permanent productivity,

a shock to the marginal efficiency of investment, shocks to price and wage markups,

shocks to monetary and fiscal policy. We introduce i.i.d. measurement errors for SPF

forecasts.30

Following Smets and Wouters (2007b) and Justiniano, Primiceri, and Tambalotti

(2010a), the model is estimated based on U.S. time series for GDP growth, consumption

growth, investment growth, employment, the federal funds rate, inflation, and wages,

for the period 1954:III-2004:IV. This sample period facilitates comparison of our results

across models in the robustness section, and avoids complications arising from the zero

lower bound. We also include SPF data on consumption growth, investment growth,

output growth, short-term inflation and short-term interest rate forecasts. The data

appendix presents more details. We set up a Kalman filter to get smoothed estimates of

the permanent component of productivity and the associated agents’ beliefs. Table 7 in

the appendix presents the parameter prior distributions. We generate 5,000,000 draws

using a Metropolis-Hastings algorithm and discard the first 20% as initial burn-in.

5.2 Results

The parameter estimates are reported in Table 1. We report mean posterior estimates,

along with the 90% credible interval. We present estimates for the diagnostic model

and the rational model, side-by-side. The bottom row reports the marginal likelihood

30The two productivity shocks are not separately observed by the agent. Instead, a public signal on permanent
productivity is available. These three variables imply a distributed lag model for TFP and beliefs about long-run
income.
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for both models.
Table 1: Posterior Distribution

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.7325 [0.5917, 0.8746]
α cap. share 0.1340 [0.1226, 0.1453] 0.1390 [0.1278, 0.1505]
h habits 0.7211 [0.6922, 0.7502] 0.5803 [0.5424, 0.6178]
χ′′(1)
χ′(1) cap. util. costs 5.0666 [3.4432, 6.6709] 5.5929 [3.9095, 7.2242]

ψp Rotemberg prices 125.58 [98.710, 152.17] 181.84 [126.66, 188.88]
ϕw Rotemberg wages 582.13 [256.01, 897.76] 9710.9 [4510.5, 14712.]
ν inv. Frisch elas. 3.8520 [2.4474, 5.2254] 1.2832 [0.5012, 1.9475]
S′′(1) inv. adj. costs 6.9588 [5.8400, 8.0723] 7.0701 [6.0111, 8.1332]
ρR m.p. rule 0.5818 [0.5429, 0.6209] 0.6820 [0.6528, 0.7121]
ϕπ m.p. rule 1.5363 [1.4173, 1.6537] 1.0682 [1.0001, 1.2046]
ϕx m.p. rule 0.0061 [0.0001, 0.0109] 0.0013 [0.0001, 0.0030]

Technology Shocks
ρ persist. 0.8573 [0.8368, 0.8780] 0.9535 [0.9352, 0.9716]
σa tech. shock s.d. 1.3772 [1.2603, 1.4947] 1.5258 [1.3896, 1.6601]
σs noise shock s.d. 0.5400 [0.3196, 0.7531] 1.0594 [0.3781, 1.7574]
Investment-Specific Shocks
ρµ persist. 0.3027 [0.2474, 0.3575] 0.3310 [0.2631, 0.4003]
σµ s.d. 18.905 [15.017, 22.716] 20.212 [16.369, 23.989]
Markup Shocks
ρp persist. 0.8749 [0.8303, 0.9209] 0.8205 [0.7663, 0.8769]
ϕp ma. comp. 0.5858 [0.4728, 0.7022] 0.5563 [0.4380, 0.6806]
σp s.d. 0.1591 [0.1306, 0.1877] 0.1988 [0.1700, 0.2271]
ρw persist. 0.9969 [0.9939, 0.9999] 0.6543 [0.5146, 0.7978]
ϕw ma. comp. 0.5765 [0.3942, 0.7630] 0.5142 [0.2882, 0.7444]
σw s.d. 0.4383 [0.3434, 0.5300] 0.4490 [0.3836, 0.5142]
Policy Shocks
ρmp persist. 0.0295 [0.0100, 0.0514] 0.0197 [0.0009, 0.0383]
σmp s.d. 0.3801 [0.3440, 0.4158] 0.3283 [0.3000, 0.3556]
ρg persist. 0.9341 [0.9058, 0.9626] 0.8974 [0.8682, 0.9275]
σg s.d. 0.3699 [0.3384, 0.4017] 0.3706 [0.3384, 0.4022]

Measurement Errors
σME
y s.d. 0.4975 [0.4467, 0.5471] 0.5034 [0.4529, 0.5533]

σME
c s.d. 0.4089 [0.3594, 0.4575] 0.4255 [0.3739, 0.4764]
σME
i s.d. 1.4320 [1.2539, 1.6039] 1.4514 [1.2692, 1.6284]
σME
r s.d. 0.2692 [0.2417, 0.2966] 0.2285 [0.2018, 0.2551]
σME
π s.d. 0.1639 [0.1432, 0.1845] 0.1482 [0.1267, 0.1693]

log Marg. Likelihood -1812.71 -1847.38

Notes: Priors are given in Table 7 in the appendix.
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Let us first look at the estimate of the diagnosticity parameter θ. Our prior dis-

tribution is normal with mean 1 and standard deviation 0.3. The estimated posterior

mean for θ is 0.7325. This estimate is close to the one obtained in the previous em-

pirical exercises reported by Bordalo, Gennaioli, Ma, and Shleifer (2020), and to the

value used by Bordalo, Gennaioli, Shleifer, and Terry (2021). Figure 8 in the appendix

shows that the posterior distribution of θ is unimodal. The 90% credible interval covers

values from 0.5917 to 0.8746, away from the RE limit of zero.

In order to understand the implications of DE, we analyze the impulse response

functions (IRFs) to the main driving processes.31 Figure 5 plots IRFs for the one-

step-ahead consumption forecast, and for selected quantities (consumption and output

growth, specifically). Figure 6 plots these IRFs for selected prices (price inflation,

nominal and real interest rates).

Consider the IRFs to the noise shock. In this model, the noise shock raises expec-

tations of future income. Lorenzoni (2009) shows that this causes the consumer to

increase spending, raising aggregate demand. Firms increase investment in anticipa-

tion of higher profits. As a consequence of this mechanism, the noise shock increases

consumption and output in the DE model (solid line). The same happens in the RE

counterfactual, obtained by shutting down diagnosticity (θ = 0, dashed line). Focusing

on the consumption forecast, we see that the behavioral consumer’s beliefs overreact to

the shock, exhibiting a more volatile response, and a rapid reversal relative to RE. The

combination of excess volatility and reversal results in a boom-bust in actual consump-

tion and economic activity more broadly, above and beyond the mechanical reversal

generated with the Kalman filter in the RE counterfactual. Consumption habits in-

troduce persistence in consumption and dampen the actual response of consumption

relative to that of the forecast. The boom-bust in the consumption forecast is, hence,

more pronounced that the boom-bust in consumption.

Turning to the IRFs of prices, we note that price inflation overreacts on impact of

the shocks. This is due to the forward-looking behavior of prices: By the logic of the

NK Phillips curve, current inflation depends on the expectation of future inflation. For

instance, following a positive TFP shock, inflation falls by a larger amount under DE

than under RE.

Another noticeable difference between the DE model and the RE counterfactual

emerges from the responses of the real rate (top-right plot, Figure 6). As discussed

in Section 3.2.2, the expression for the diagnostic real rate features an extra term

θ(π̂t − Et−1[π̂t]), whereby current surprise inflation is extrapolated into future prices.

31We plot the IRFs of the shocks that explain the highest share of consumption volatility on impact.
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Figure 5: Impulse Responses: Quantities
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Notes: The panels depict the impulse responses of one-step-ahead consumption forecast, consumption, and output to a one standard
deviation shock to noise signal, temporary TFP, and wage markup. The solid lines denote impulses responses with diagnostic
expectations, whereas the dashed lines denote responses with rational expectations. We plot the estimated DE model and the RE
counterfactual (θ = 0). See Table 1 for parameters.

As a result, the real rate exhibits marked boom-bust dynamics. For instance, looking

at the response to a noise shock, we see that the diagnostic real rate drops on impact

since inflation has unexpectedly increased, and then turns positive in the next pe-

riod. Similar to our previous applications, these reversal dynamics are systematically

neglected by diagnostic agents.

Overall, comparing the IRFs of the DE model and the RE counterfactual suggests

that the DE model affords extra volatility of endogenous variables in general equilib-

rium. This theme was developed analytically at the beginning of Section 4, and linked

to nominal rigidities. To quantify this point we compute the excess unconditional

volatility afforded by DE for consumption growth, output growth, price and wage in-

flation, and the real rate. Among these, the largest increase is the one of the real rate,
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Figure 6: Impulse Responses: Prices

(a) Price Inflation
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Notes: The panels depict the impulse responses of inflation, the nominal interest rate, and the real rate to a one standard deviation
shock to noise signal, temporary TFP, and wage markup. The solid lines denote impulses responses with diagnostic expectations,
whereas the dashed lines denote responses with rational expectations. We plot the estimated DE model and the RE counterfactual
(θ = 0). See Table 1 for parameters.

with a 37% increase in volatility. The increase of consumption volatility is particularly

strong as well, at 23%. This amplification is consistent with overreaction in consumers’

expectations about future consumption, and with the boom-bust dynamics of the di-

agnostic real rate. The volatility of other variables increase as well (see Table 8 in the

appendix).

We use the Bayes factor to empirically evaluate the fit of the diagnostic model

against the rational model. The log marginal likelihood of the data given the estimated

diagnostic model is -1812.71. This statistic is lower, -1847.38, in the case of the rational

counterpart. This difference in log marginal likelihoods represents evidence in favor of

the diagnostic model.32

32Following the Kass and Raftery (1995) classification, 2 log(BF ) = 2× 34.67 = 69.34 statistic represents “very
strong evidence” in favor of the diagnostic model. This statistic has been used for model comparisons in the DSGE
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We look at the forecast error variance decompositions to get intuition into how

the DE model fits the data and outperforms the RE model. In order to assess which

shocks account for short-run volatility, Table 2 presents the one-step-ahead variance

decomposition across all structural shocks for quantities and prices. For each, we first

present the case of the DE model. Then, for comparison, we present the variance de-

composition for the estimated RE model (with parameter estimates presented in Table

1). A striking finding is that the DE model relies much less on noise shocks to explain

consumption fluctuations. The contribution of noise shocks to consumption volatility

is only 12% in the DE model (compared to 43% in the RE model), and to output

is 7% in the DE model (compared to 25% in the RE model). Other shocks explain

these variables, with temporary TFP shocks explaining 30% of consumption and 18%

of output volatility in the DE model (versus 15% and 7% in the RE model), and with

wage markup shocks explaining 30% of consumption and 19% output volatility (versus

1% and 1% in the RE model).33

What explains this pattern? The DE model exploits the rich propagation afforded

by extrapolation in the forward-looking behavior of consumers, firms, workers, and

financial markets. Consumers extrapolate, generating extra volatility and reversals of

consumption. Firms extrapolate, generating extra volatility and reversals of invest-

ment. Price and wage setters extrapolate, generating extra volatility and reversals

in price and wage inflation. Financial markets extrapolate, generating extrapolation

of current surprise inflation when pricing nominal bonds, together with implied dy-

namics of the real rate. Instead, in the case of the RE model, errors in expectations

arise only about future income, following the permanent income channel emphasized

by BLL, who build on Lorenzoni (2009). Overall, the DE model affords a more flex-

ible structure of errors in expectations, and is able to explain deviations from belief

rationality on several dimensions. This finding can be interpreted as evidence that

DE outcompete noise shocks as a preferred channel to explain fluctuations. Consistent

with this view, we point to the fact that the estimated noise in the signal, σs, is 0.5400

in the DE model (versus 1.0594 in the RE model). The DE model fits the data with

a more precise signal and therefore a lower degree of information imperfections. It

explains fluctuations with the aid of other shocks, which employ diagnosticity in order

to propagate internally in general equilibrium.

We also note the sharp drop in the importance of exogenous markups in explaining

price and wage inflation variance. Indeed, price markup shocks explain 33% of price

literature. See, for example, Ascari, Bonomolo, and Lopes (2019).
33Chahrour and Jurado (2018) propose a variance decomposition of news and noise in terms of fundamental

shocks and noise. For ease of comparison, we retain the original BLL decomposition.
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Table 2: Variance Decomposition: Quantities and Prices

Variable Noise Perm.
TFP

Temp.
TFP

Invest. Price
Markup

Wage
Markup

Monet. Fiscal

Consumption

DE 0.1158 0.0432 0.2976 0.0013 0.0313 0.3010 0.1814 0.0283

RE 0.4310 0.0039 0.1509 0.0006 0.0334 0.0121 0.3680 0.0001

Investment

DE 0.0020 0.0018 0.0279 0.9347 0.0102 0.0187 0.0035 0.0012

RE 0.0156 0.0002 0.0104 0.9585 0.0050 0.0014 0.0089 0.0001

Output

DE 0.0707 0.0262 0.1776 0.2842 0.0373 0.1942 0.1093 0.1005

RE 0.2493 0.0021 0.0716 0.2867 0.0278 0.0059 0.2017 0.1547

Price Inflation

DE 0.0658 0.0000 0.4055 0.0880 0.3259 0.0314 0.0656 0.0179

RE 0.0175 0.0003 0.2859 0.0025 0.5902 0.1023 0.0007 0.0006

Wage Inflation

DE 0.1285 0.0216 0.0115 0.1120 0.4138 0.2210 0.0814 0.0101

RE 0.0046 0.0003 0.0835 0.0004 0.2449 0.6662 0.0000 0.0000

Nominal Rate

DE 0.0279 0.0000 0.1737 0.0378 0.1350 0.0125 0.6053 0.0077

RE 0.0026 0.0000 0.0413 0.0003 0.0840 0.0146 0.8571 0.0001

Real Rate

DE 0.0319 0.0000 0.1647 0.0431 0.0360 0.0147 0.7006 0.0090

RE 0.0077 0.0001 0.0848 0.0019 0.0006 0.0391 0.8656 0.0002

Notes: The one-step-ahead variance decomposition is performed at the mean of each specification. The decomposition for the RE
model is obtained using the estimated parameters reported in Table 1 (RE estimated).

inflation volatility in the DE model (versus 59% in the RE model). Similarly, wage

markup shocks explain 22% of wage inflation volatility in the DE model (versus 67%

in the RE model). The DE model exploits the forward-looking behavior of wage

setters to explain goods prices and wages, relying more on other shocks and internal

propagation mechanisms. For instance, temporary TFP shocks explain 41% of price

inflation volatility in the DE model (versus 29% in the RE model). Also, price markup

shocks explain 41% of wage inflation volatility in the DE model, instead of 24% of

wage inflation volatility in the RE model. Consistent with this finding on the variance
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decomposition, the wage Phillips curve is steeper in the DE model, as evidenced by a

much lower Rotemberg costs parameter.

Table 3 presents one-step-ahead variance decomposition for the forecast data, dis-

tinguishing between the relative contribution of structural shocks to that of observation

errors in terms of short-run volatility. We find that the structural shocks account for a

higher share of the short-run empirical volatility of forecast data in the DE model. For

instance, 44% of the one-step-ahead consumption forecast is explained by structural

shocks in the DE model (versus 31% in the RE model), and 56% of the one-step-ahead

inflation forecast volatility is explained by structural shocks in the DE model (versus

33% in the RE model).

Table 3: Variance Decomposition: One-Step-Ahead Forecasts

Variable Structural Shocks Measurement Errors

Consumption

DE 0.44 0.56

RE 0.30 0.70

Investment

DE 0.33 0.67

RE 0.17 0.83

Output

DE 0.44 0.56

RE 0.31 0.69

Price Inflation

DE 0.56 0.44

RE 0.33 0.67

Nominal Rate

DE 0.91 0.09

RE 0.76 0.24

Notes: The one-step-ahead variance decomposition is performed at the mean of each specification. The decomposition for the RE
model is obtained with the estimated parameters reported in Table 1 (DE) and setting θ = 0 (RE counterfactual).

This analysis points to two primary reasons that explain the empirical success of

the DE model.

First, diagnosticity is a powerful and flexible amplification mechanism, generating

errors in expectations along several dimensions. To shed light on the implications of

this finding, we draw on a previously documented caveat of the news and noise model
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under RE when it comes to fitting business cycle data. Despite embodying the best

candidate model to explain business cycle fluctuations based on shocks to rational ex-

pectations (Chahrour and Jurado 2018), the news and noise model is known to deliver

a poor fit of the interest rate rule. Indeed, as discussed in BLL (pp. 3064-5), an em-

pirically successful propagation of noise shocks requires either an unrealistically dovish

monetary authority, or unrealistically flat Phillips curves. This is a consequence of the

standard specification of log utility in consumption, which sets the intertemporal elas-

ticity of substitution to one, making consumption highly sensitive to the real interest

rate. Hence, a hawkish interest rate rule can easily mitigate the propagation of noise

shocks in the RE model. Consistent with the previous literature, our RE estimates

feature an unrealistically dovish interest rule, with a point estimate of ϕπ at 1.07, close

to the estimate in BLL at 1.01. This value is much smaller than the one obtained, for

instance, by Smets and Wouters (2007b) (ϕπ = 2.04), or by Justiniano, Primiceri, and

Tambalotti (2010a) (ϕπ = 2.09).

This fact provides a valuable insight into the superior empirical performance of

the DE model. As discussed in the context of the variance decomposition Table 2,

DE generate errors in expectations along several dimensions. The RE model, instead,

generates errors in expectations only through the effects of exogenous shifts in expecta-

tions of future income through noise shocks (Lorenzoni 2009). Hence, a lower reliance

on noise shocks in the DE model allows to improve the fit of the monetary policy rule.

By way of implication, the coefficient ϕπ is estimated at 1.54, more in line with the

rest of the literature.34 Endogenous errors in expectations using DE constitute a step

forward in the specification of DSGE models for business cycle analysis.

As a case in point, the implications of alternative interest rate rule estimates can

be seen by considering the path of interest rate forecasts in the last recession in our

sample. In the first quarter of 2001, the U.S. economy entered the dot-com bubble

recession. An ensuing Federal Reserve’s easing cycle brought the effective Federal

Funds Rate down from 6.52% to 1.00%. One-quarter-ahead interest rate forecasts also

adjusted downwards. Figure 7 presents the actual and the model-implied forecasts,

both under DE and under RE (with respective parameter estimates presented in Table

1).35 Actual forecasts are plotted with the solid line and circle markers; DE forecasts

are plotted with solid line and no markers; RE forecasts are plotted with the dashed

line. Consistent with the improved estimate of the systematic component of monetary

34Note, both Phillips curves are also slightly steeper in the DE model. Such parameter estimates significantly
dampen the equilibrium effects of noise shocks and its relative importance as an explanatory mechanism, as shown
in Table 2.

35With the help of measurement errors, both models obviously generate a path of forecasts that exactly matches
the data. We look at the model-implied forecasts conditional on structural shocks only.
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Figure 7: Interest Rate Forecasts: SPF and Model-Implied
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Notes: The figure depicts the path of interest rate (one-period ahead, annualized) forecasts (solid line, circle markers), together with
their model-implied counterpart under DE (solid line) and RE (dashed line) from 2000:Q2 to 2004:Q3. The path for the RE model is
obtained using the estimated parameters reported in Table 1 (RE estimated).

policy and the extrapolative nature of beliefs, the DE model forecasts track the actual

forecasts more closely over this period. The RE model, with a less reactive mone-

tary policy rule (lower ϕπ and ϕx), under-predicts the extent of the decline in actual

forecasts.36

The second fact that embodies the empirical success of DE is the following. The

DE model is able to explain price and wage dynamics inflation internally, relying less

on exogenous markup drivers, as evidenced by the variance decomposition Table 2.

Consistent with this view, we highlight that the standard deviation of price markup

shock σµ is estimated at 0.1591 in the DE model (versus 0.1998 in the RE model).37

We interpret the fact that price and wage fluctuations are explained internally, rather

than exogenously, as an encouraging finding. This is because DSGE models could be

criticized on the grounds that markup shocks constitute a rather black-boxy ingredient

without a realistic counterpart (Chari, Kehoe, and McGrattan 2009).

36More broadly, and consistent with our reported estimates of the standard deviation of measurement errors,
the RMSE of model-implied forecasts based on structural shocks reveals that the DE model tracks the actual
forecast data more closely than the RE model for 3 out of 5 forecast series (output growth, investment growth, and
consumption growth). For the interest rate forecast, this is also the case in the second part of the sample (1990:I
onwards).

37The estimated standard deviation of wage markup shocks is also lower, 0.44 in the DE model, versus 0.45 in
the RE model.
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5.3 Robustness

5.3.1 Prior on the Diagnosticity Parameter θ Centered at Zero

The model can in principle fit the data with a value of θ that is either close to zero, or

negative. Thus, it is important to check that imposing a prior distribution centered at

a positive value (such as 1) does not importantly affect our results. Using a symmetric

prior distribution around 0 (θ ∼ N(0.0.3)), we re-estimate the DSGE model under

DE. Table 9 in the appendix presents the results. Our posterior estimate of θ is not

importantly affected, with a mean posterior of 0.6537. Again, the 90% credible interval

is away from zero, covering values from 0.5193 to 0.7884, away from the RE limit of

zero. The log marginal likelihood is also higher for the DE model than for the RE

model (-1814.82 versus -1847.38).

5.3.2 Diagnostic Expectations in Alternative Off-The-Shelf Models

Another robustness check concerns the importance of details of our implementation

for the conclusion that DE provide a superior fit of business cycle data. There are two

separate angles of potential concern. First, does this conclusion crucially depend on

using the BLL model? Second, does this conclusion crucially depend on including SPF

data among the set of observable variables?

In order to demonstrate that the answer to both these questions is negative, here,

we undertake the estimation of two influential off-the-shelf DSGE models: Smets and

Wouters (2007b) and Justiniano, Primiceri, and Tambalotti (2010a). In the estimation

of each of this models, we make sure to replicate the authors’ procedure as close as

possible: We use the same sample 1954:III–2004:IV. We use their data set, ensuring

variable construction does not cause any differences. We also set the same prior distri-

bution. Hence, our RE results replicate their findings. The introduction of DE in this

case constitutes a particularly tight test that DE are useful to explain business cycle

data.

Table 11 in the appendix presents the results for the Smets and Wouters (2007b)

model. We present estimates for this model under diagnosticity, and for the baseline

the rational model, side-by-side.38 Our posterior estimate of θ is smaller than under

BLL, but still positive with a mean posterior of 0.4435. The 90% credible interval

is away from the RE limit of zero, covering values from 0.1822 to 0.6928. The log

marginal likelihood is also higher for the DE model than for the RE model (-897.91

38For the RE model, we obtain a similar slope of the price and wage Phillips curves despite the use of Rotemberg
adjustment costs instead of Calvo in our specification of nominal rigidities.
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versus -900.69).

Table 13 in the appendix presents the results for the Justiniano, Primiceri, and

Tambalotti (2010a) model. We present estimates for this model under diagnosticity,

and for the baseline the rational model, side-by-side. Our posterior estimate of θ is

smaller than under BLL but still positive with a mean posterior of 0.4336. The 90%

credible interval is away from the RE limit of zero, covering values from 0.1894 to

0.6745.39 The log marginal likelihood is also higher for the DE model than for the RE

model (-1190.86 versus -1193.78).

6 Conclusion

In this paper, we argue that diagnostic expectations constitute a behavioral mechanism

that can be fruitfully incorporated into New Keynesian macroeconomics. To this end,

we first considered a set of challenges encountered by researchers working with this

type of models, and revisited them analytically under diagnostic expectations. We

concluded that the use of diagnostic expectations opens up avenues to make significant

progress in the context of these challenges. We then asked if diagnostic expectations

are validated empirically. Using a rich medium-scale DSGE model with news shocks

and imperfect information, we conclude that the answer to this question is yes: The

diagnostic model dominates the rational counterpart in terms of fit. This conclusion

is robust to the consideration of other benchmark models.

Our general solution method offers opportunities to explore and revisit a number

of themes in macroeconomics and international macroeconomics in the context of di-

agnostic expectations. For example, a challenge in open economy models has been to

account for the cyclicality of the current account in emerging countries, or to improve

our understanding of exchange rate predictability. Furthermore, it would be fruitful

to extend this solution method to nonlinear settings, such as monetary models where

the zero lower bound constraint on nominal interest rates is imposed. Finally, our

paper uses the property of the representativeness heuristic that innovations to pre-

determined variables produce a form of cue-dependence which distorts beliefs about

future outcomes. A robust literature in psychology and behavioral economics provides

foundations for a wide range of inconsistencies that depend on selective and associative

memory (Kahana 2012; Bordalo, Conlon, Gennaioli, Kwon, and Shleifer 2023). Under-

standing the theoretical and empirical underpinnings of cues based on predetermined

39In unreported results, we find that diagnosticity also generates extra volatility for output, consumption, invest-
ment, price inflation, wage inflation, and the real rate, for both the Smets and Wouters (2007b) and the Justiniano
et al. (2010a) models.
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variables is an important avenue for research. We leave these explorations to future

work.
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A Proofs for RE Representation Result

This appendix collects all proofs for the results stated in Section 3. Standard ma-

trix operations to obtain the solution, and associated proofs (needed once the RE

representation has been obtained), are discussed in Appendix B.

A.1 Diagnostic Expectation Formula

Suppose that xt follows an univariate AR(1) process, xt = ρxxt−1 + εt, with εt ∼
i.i.d. N(0, σ2

ε). Given (realized) states x̌t and x̌t−1, the diagnostic probability distribu-

tion function of xt+1 is

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = ρxx̌t−1)

]θ
· C (41)

When looking at equation (41), it is important to notice that, generically, x̌t ̸=
ρxx̌t−1 (due to the realization of the shock εt.) However, since εt is fixed at 0 by the

NNA, then

f(xt+1|xt = ρxx̌t−1) ∝ φ

(
xt+1 − ρ2xx̌t−1

σε

)
(42)

Thanks to the NNA, the variance of this pdf is σ2
ε , which is the same as the variance

of the true pdf of xt+1. Thus, the true and the reference distributions have the same

variance. This ensures tractability.

We now prove that the diagnostic expectation of a univariate variable can be ex-

pressed in terms of rational expectations.

Lemma 1 (Univariate RE Representation) Suppose that xt follows an AR(1) pro-

cess and that the NNA holds. Then,

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (43)

Proof (Lemma 1.) The diagnostic expectation of xt+1 is given by

Eθt [xt+1] =

∫ ∞

−∞
xf θt (x)dx (44)
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The diagnostic pdf is given by

f θt (x) =

[
1
σε
φ

(
x−ρxx̌t
σε

)]1+θ
[

1
σε
φ

(
x−ρ2xx̌t−1

σε

)]θ C (45)

where C is a normalizing constant given by

C = exp

{
− 1

2

(
θ(1 + θ)ρ2xx̌

2
t + θ(θ + 1)ρ4xx̌

2
t−1 − 2(1 + θ)θρ3xx̌tx̌t−1

σ2
ε

)}
(46)

in which case

Eθt [xt+1] =

∫ ∞

−∞
xf θt (x)dx

=

∫ ∞

−∞
x
1

σε
φ

(
x− (ρxx̌t + θ(ρxx̌t − ρ2xx̌t−1))

σε

)
dx (47)

Thus, the diagnostic distribution f θt (xt+1) is normal with variance σ2
ε and mean

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (48)

■

In formula (43), the lagged expectation Et−1[xt+1] is the expectation conditional on

information available at t− 1, that is, conditional on x̌t−1. Thus, Et[xt+1] = ρxx̌t and

Et−1[xt+1] = ρ2xx̌t−1. For a given realized ε̌t, this proof implies that:

Eθt [xt+1] = Et[xt+1] + θρxε̌t > Et[xt+1] (49)

if and only if ε̌t > 0, that is diagnostic expectations indeed extrapolate the past shock

into future beliefs.

Extension to Multivariate Case. Assume that the vector zt follows a multivariate

AR(1) process, zt = Azzt−1+wt, wherewt ∼ N(0,Σw), andAz is a persistence matrix.

(Notice that we do not require orthogonality.)

We make the following multivariate no-news assumption (henceforth NNA) for any

Gaussian AR(1) vector zt+1.
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Assumption 2 (Multivariate No-News Assumption)

f(zt+1| −Gt) = f(zt+1|zt = Azžt−1) (50)

The extension to the multivariate case is based on the fact that each element of the

vector is univariate normal.

Lemma 2 (Multivariate DE Formula) Assume that the vector zt follows a multi-

variate AR(1) process. Then,

Eθt [zt+1] = Et[zt+1] + θ(Et[zt+1]− Et−1[zt+1]) (51)

Proof (Lemma 2). The proof proceeds element-by-element of the vector zt+1. With-

out loss of generality, consider the first element z1,t+1. The marginal distribution of

z1,t+1 is also normal, and thus, under the NNA,

Eθt [z1,t+1] = Et[z1,t+1] + θ(Et[z1,t+1]− Et−1[z1,t+1]) (52)

The proof for the other elements of zt is identical. ■

Equation (17) follows from this lemma.

A.2 Existence and Uniqueness of the Rational Expectations

Representation for the General Linear Model

The proof uses the fact that endogenous variables of the DSGE model are normally

distributed, allowing to use the multivariate BGS formula (17), together with the

linearity of the RE operator. First, we need to prove the following lemma.

Lemma 3 (Distribution of the Linear Combination Fyt+1 +G1yt +Mxt+1 +N1xt)

Consider the multivariate process (13) and model (18). The vector Fyt+1 + G1yt +

Mxt+1 +N1xt follows a multivariate normal distribution.

Proof (Lemma 3). First,

Mxt+1 ∼ N(MAx̌t,MΣvM
′) (53)

Also,

Fyt+1 ∼ N(FPy̌t + FQAx̌t,F(Q+R)Σv(Q+R)′F′) (54)
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Finally,

Fyt+1 +G1yt +Mxt+1 +N1xt ∼ N((FP+G1)y̌t + ((FQ+M)A+N1)x̌t,

(F(Q+R) +M)Σv(F(Q+R) +M)′) (55)

■

Proof (Proposition 1). Lemma 3 shows Fyt+1 +G1yt +Mxt+1 +N1xt is multi-

variate Gaussian. As a consequence of this fact, we can can evaluate the DE on the

multivariate model using Lemma 2. Re-writing equation (20):

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

+θ
(
Et[Fyt+1 +G1yt +Mxt+1 +N1xt]

−Et−1[Fyt+1 +G1yt +Mxt+1 +N1xt]
)

(56)

Using the linearity of the RE operator:

Eθt [Fyt+1 +G1yt +Mxt+1 +N1xt] = FEt[yt+1] +G1Et[yt] +MEt[xt+1] +N1Et[xt]

+θ
(
FEt[yt+1] +G1Et[yt] +MEt[xt+1] +N1Et[xt]

−FEt−1[yt+1] +G1Et−1[yt] +MEt−1[xt+1] +N1Et−1[xt]
)

(57)

Since Et[yt] = yt and Et[xt] = xt, and using the definitions ofG andN in the statement

of the proposition, we find that equation (18) implies equation (21).

Uniqueness follows from the fact that the DE can only be evaluated in a unique

way once NNA on the multivariate model (Assumption 2) has been assumed.

Hence, model (18) is equivalent to model (21).

■
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B Detailed Solution Procedure, Stability, and Bound-

edness of the Solution: Supplementary Materials

and Proofs

B.1 Detailed Solution Procedure

We solve for the recursive equilibrium law of motion of a linear diagnostic-expectations

DSGE model using the method of undetermined coefficients.

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 +Qxt +Rvt (58)

We write the model in the rational expectations representation as

0 = FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt +G1Pyt−1 + ...

+G1Qxt + θG1Qvt + (1 + θ)G1Rvt +G2Pyt−1 +G2Qxt +G2Rvt +MAxt + ...

+ θMAvt +N1xt + θN1vt +Hyt−1 +N2xt (59)

It is now straightforward to proceed by the method of undetermined coefficients to

find a solution of the form (58), and the matrices P,Q,R can be found solving the

following matrix equations.

FP2 +GP+H = 0 (60)

FPQ+ FQA+GQ+MA+N = 0 (61)

θFPQ+ (1 + θ)FPR+ θFQA+ θG1Q+GR+ θG1R+ θMA+ θN1 = 0 (62)
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where G = G1 +G2 and N = N1 +N2.

We can use the techniques discussed in Uhlig (1995) to solve the quadratic matrix

equation (60) in P. The solution of the other two equations is straightforward as they

are linear in Q and R: After vectorization, equation (61) becomes

(Im ⊗ FP)vec(Q) + (AT ⊗ F)vec(Q) + (Im ⊗G)vec(Q) + vec(MA) + vec(N) = 0

(63)

such that

vec(Q) = −
(
(Im ⊗ FP) + (AT ⊗ F) + (Im ⊗G)

)−1

× (vec(MA) + vec(N)) (64)

R can be found from (62):

R = −
(
(1 + θ)FP+G+ θG1

)−1(
θFPQ+ θFQA+ θG1Q+ θMA+ θN1

)
(65)

Observe that solution for matrices P and Q does not depend on diagnosticity

parameter.

The Solution under Rational Expectations. Consider the model under rational

expectations:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt = 0 (66)

where G = G1 + G2 and N = N1 + N2 and, as above, yt and xt denote vectors of

endogenous variables (including controls and states) (m× 1) and of exogenous states

(n × 1). Et denotes the rational expectation operator, and the exogenous process is

given by (13).

Suppose that there is a unique stable solution of the model:

yt = P̃yt−1 + Q̃xt (67)

then, we can rewrite the stochastic difference equation (66) as follows:

FEt
[
P̃yt + Q̃xt+1

]
+GP̃yt−1 +GQ̃xt +Hyt−1 +MAxt +Nxt = 0 (68)

52



We can simplify the above equation to

FP̃2yt−1 + FP̃Q̃xt + FQ̃Axt +GP̃yt−1 +GQ̃xt +Hyt−1 +MAxt +Nxt = 0 (69)

and can solve similarly for the recursive equilibrium law of motion via the method of

undetermined coefficients. Specifically, the matrices P̃ and Q̃ can be found solving the

following matrix equations.

FP̃2 +GP̃+H = 0 (70)

FP̃Q̃+ FQ̃A+GQ̃+MA+N = 0 (71)

Comparison of these equations with their counterpart under DE immediately shows

that P = P̃ and Q = Q̃.

B.2 Stability

It turns out that the model under DE is subject to the same stability conditions as the

model under RE. More precisely, consider the same model above, but under rational

expectations (θ = 0):

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt = 0 (72)

where the matrices F, G, H, M and N are defined above. The following result holds.

Proposition 5 (Stability) Assume a bounded solution exists for the DE model given

by equations (13) and (18). The stability conditions for this DE model are identical to

the stability conditions for the RE model given by (13) and (72).

In order to build up to the proof of this Proposition, we define a few objects. Given

the quadratic matrix equation (60)

FP2 +GP+H = 0 (73)

for the m×m matrix P and m×m matrices G and H, define the 2m× 2m matrices

Ξ and ∆:

Ξ =

[
−G −H

Im 0m

]
(74)
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and

∆ =

[
−F 0m

0m Im

]
(75)

where Im is the identity matrix of size m and 0m is the m×m matrix with only zero

entries.

Uhlig (1995) shows that if (a) s is a generalized eigenvector and λ is the corre-

sponding generalized eigenvalue of Ξ with respect to ∆, then s can be written as

s′ =
[
λx

′
, x

′]
for some x ∈ Rm, and (b) there are m generalized eigenvalues λ1, ..., λm

together with generalized eigenvectors s1, ..., sm of Ξ with respect to ∆, written as

s
′
i = [λix

′
i, x

′
i] for some xi ∈ Rm, and if (x1, ..., xm) is linearly dependent, then

P = ΩΛΩ
′

(76)

is a solution to the matrix quadratic equation, where Ω = [x1, ..., xm] and Λ =

diag(λ1, ..., λm).

The stability conditions are given as follows.40

Lemma 4 The solution P is stable if |λi| < 1 for all i = 1, ...,m.

Thus, we can easily show that the stability conditions for both models are the same.

Proof (Proposition 5). The solutions P and P̃ are the same since they involve

identical matrices F, G, and H. Thus, the stability conditions stated in the lemma

are the same for both solutions. ■

While the stability conditions are exactly same as under the RE model, we note

that the existence of a bounded solution under DE requires an additional assumption.

We formalize this requirement in the following proposition.

Proposition 6 (Existence of a Bounded Solution) Assume a bounded solution ex-

ists for the RE model given by equations (13) and (18) with θ = 0. Then a bounded

solution for the DE model exists if (1 + θ)FP+G+ θG1 is full-rank.

Proof (Proposition 6). Let’s consider the RE model presented in equation (66)

where the exogenous variables are stacked in a (n × 1) vector xt that is assumed to

follow the AR(1) stochastic process

xt = Axt−1 + vt (77)

40See Section 6.3 of Uhlig (1995) for a detailed discussion.
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where vt is a (k × 1) vector of Gaussian and orthogonal exogenous shocks:

vt ∼ N(0,Σv) (78)

and A is a diagonal matrix of persistence parameters.

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 +Qxt (79)

Assume, without loss of generality, that any unanticipated shocks or news only hit

the economy at date 1. The economy is in steady state at date 0 or before. Then, the

solution of the DE model from date 2 onwards coincides with the RE model solution.

We prove this statement by considering the RE representation of the DE model derived

in equation (21), reproduced here:

FEt[yt+1] +Gyt +Hyt−1 +MEt[xt+1] +Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)
+Mθ

(
Et[xt+1]− Et−1[xt+1]

)
+G1θ

(
yt − Et−1[yt]

)
+N1θ

(
xt − Et−1[xt]

)
= 0 (80)

Since no news or shocks are assumed to happen for t ≥ 2, we get that

Et[yt+1]− Et−1[yt+1] = Et[xt+1]− Et−1[xt+1] = yt − Et−1[yt] = xt − Et−1[xt] = 0; ∀t ≥ 2

(81)

The system from date t ≥ 2 then simplifies to the RE model, the solution of which is

given by equation (79) for t ≥ 2. Date 1 solution for the DE model can then be found

from (note the assumption that the economy is in steady state before date 1):

FE1[y2] +Gy1 +ME1[x2] +Nx1

+θ
(
FE1[y2] +ME1[x2] +G1y1 +N1x1

)
= 0 (82)

Notice that E1[y2] and E1[x2] are known at date 1 from the RE solution.

E1[y2] = Py1 +QAx1; E1[x2] = Ax1 (83)
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After substituting these values and rearranging, we get:

(
(1 + θ)FP+G+ θG1

)
y1 +

(
(1 + θ)(FQ+M)A+N+ θN1

)
x1 = 0 (84)

Then, it follows that a bounded solution for the DE model exists if (1+θ)FP+G+θG1

is full-rank. ■

With Example 1 in Section 3, we can illustrate the result obtained in Proposition

6: When θ → 1
aϕ1

− 1 or θ → ∞, then the DE solution explodes even though there

exists a unique bounded RE solution. The lesson of this example is therefore that in

practice the researcher may need to be mindful of bifurcation points. In particular,

bifurcation values could affect search over the parameter space in the context of struc-

tural estimation. In our application to NK models, we compute the conditions such

that the DE solution explodes, and verify that the associated limit values for θ are

very large. Therefore, this does not materially affect our results.

B.3 General Condition for Extra Volatility

We establish a general result about when DE generate extra volatility over RE. Specific

examples are provided in Section 4. As a reminder, in the case of DE, the solution of

a general linear model takes the form:

yt = Pyt−1 +Qxt +Rvt (85)

Instead, in the case of RE, the solution of model takes the form:

yt = P̃yt−1 + Q̃xt (86)

Comparing these two immediately leads to conjecture that, under DE, there should

be extra volatility due to the presence of the extra term Rvt. However, whether this

conjecture is true for a given set of parameters depends on the covariance of the matrix

Q with the other matrices of parameters in the solution. This is what the following

proposition makes precise.

Proposition 7 (Extra Volatility) Let yDEt and yREt denote the vectors of endoge-

nous variables under DE and RE, respectively. Let yDEit and yREit respectively denote

the i-th component of the vector of endogenous variables yDEt and yREt and V ar(yDEit )

and V ar(yREit ) denote the variance of the variable yDEit and of the variable yREit . Then,
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V ar(yDEit ) is larger than V ar(yREit ) if and only if:

diag(RΣvR
′ + 2QΣvR

′)i > 0 (87)

where Σv is the variance-covariance matrix of vt.

Proof. We have already shown that P and P̃ are the same and that Q and Q̃ are the

same. Thus, given the exogenous process xt, the solution for the model with diagnostic

expectations and for the model with rational expectations can be formulated as

yDEt = Pyt−1 +Qxt +Rvt (88)

yREt = Pyt−1 +Qxt (89)

such that the variance of the vector of endogenous variables under diagnostic expecta-

tions, yDEt , is given by

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt)

+ 2 Cov(Pyt−1,Qxt) + 2 Cov(Pyt−1,Rvt) + 2 Cov(Qxt,Rvt) (90)

Similarly, the variance of the vector of endogenous variables under rational expec-

tations, yREt is given by

V ar(yREt ) = V ar(Pyt−1) + V ar(Qxt) + 2 Cov(Pyt−1,Qxt) (91)

Since cov(Pyt−1,Rvt) = 0, (90) is simplified to

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt) + 2 Cov(Pyt−1,Qxt) + 2 Cov(Qxt,Rvt)

(92)

such that by taking the difference of the two variances, we have

V ar(yDEt )− V ar(yREt ) = V ar(Rvt) + 2 Cov(Qxt,Rvt)

= V ar(Rvt) + 2 Cov(QAxt−1 +Qvt,Rvt)

= RΣvR
′ + 2QΣvR

′ (93)

Thus, for an endogenous variable yit to have extra volatility with diagnostic expec-

tations, the i-th diagonal component of the matrix RΣvR
′+2QΣvR

′ must be greater

than zero.

We conclude by making a parallel to the work by Matsuyama (2007), who high-
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lights, in the context of financial frictions, that equilibrium properties change non-

monotonically with parameter values in such models. Looking at the expression for

the matrix R reveals that it is a non-linear function of θ. Hence, even values of θ close

to zero have the potential to (discontinuously) induce large volatility in linear models.

C Diagnostic New Keynesian Model: Detailed Deriva-

tion and Proofs

There are three sets of agents in the economy: households, firms and government.

Total output produced is equal to consumption expenditure made by the households

and adjustment costs spent in adjusting prices.

C.1 Diagnostic Distribution

We first generalize the concept of diagnostic distribution to non-linear models with

exogenous shocks.

Let Dt be a vector of variables, endogenous and exogenous. Assume there is a

non-linear transformation Dt ≡ T (Dt−1,vt), that maps time-t − 1 variables, Dt−1,

and a given realization of the exogenous shock process v̌t, where vt is a vector of

i.i.d. exogenous Gaussian shocks N(0,Σv). Notice that this can accommodate the

AR(1) of exogenous variables as in Section 3. Let f (Dt+1|Dt = T (Dt−1, v̌t)) denote

the true distribution of Dt+1 at time t + 1, conditional on current state variables.

Let f (Dt+1|Dt = T (Dt−1,Et−1[vt])) denote the true distribution of Dt+1 at time t+ 1

conditional on a reference set of the state vector T (Dt−1,Et−1[vt]). As in the no-news

assumption, the agent has not observed the current realization of the shocks vt in the

reference set, and hence forms forecast of Dt+1 assuming a counterfactual path for

state vector given by the expectation of the shocks. Following Maxted (2022), BGS,

Gennaioli and Shleifer (2010), the “representativeness” of future states Dt+1 is given

by the likelihood ratio:

f (Dt+1|Dt = T (Dt−1, v̌t))

f (Dt+1|Dt = T (Dt−1,Et−1[vt]))
(94)

Diagnostic expectations overweight states that are representative of recent news, the

ones exhibiting the largest increase in likelihood based on recent information. This

diagnostic distribution is formalized by assuming that agents evaluate future levels of
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state vector evolve as follows:

f θ (Dt+1|Dt = T (Dt−1, v̌t)) = f (Dt+1|Dt = T (Dt−1, v̌t)) ·
[

f (Dt+1|Dt = T (Dt−1, v̌t))

f (Dt+1|Dt = T (Dt−1,Et−1[vt]))

]θ
1

Z

(95)

The extent to which representativeness distorts expectations is governed by the pa-

rameter θ.

C.2 Households

Notice that we write dynamic maximization problems, as this one, by explicitly sep-

arating time t choice variables from the expectation of future choice variables. This

separation is crucial for solving the model with diagnostic expectations, and is a con-

sequence of the DE path dependence discussed in Section 3.

Households have the following lifetime utility

logCt − ω
L1+ν
t

1 + ν
+ Eθt

[
Σ∞
s=t+1β

s−t
[
log(Cs)−

ω

1 + ν
L1+ν
s

]]
(96)

subject to budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt , (97)

PtCt is nominal expenditure on final consumption good, Bt+1 denotes purchase of nom-

inal bonds that pay off 1 + it interest rate in the following period, WtLt denotes labor

income, Dt and Tt denote dividends from firm-ownership and lump-sum government

transfers respectively. Eθt is the diagnostic expectations operator with diagnosticity

parameter θ.

Let logCt ≡ u(Ct). The DE operator is the expectation over a continuous den-

sity, hence one gets these first-order conditions by taking derivatives, as usual. The

consumption Euler equation is given by:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
(98)

Substitute the resource constraint Yt = Ct, and loglinearizing:

ŷt = Eθt [ŷt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (99)
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where {ŷt, ît, p̂t} denote loglinear deviations of output, the nominal interest rate from

their respective steady states, and of the price level from an initial price level, respec-

tively.

Going back to (27), and computing the DE of the sum p̂t + π̂t+1 using the BGS

formula:

Eθt [p̂t+1] = (1 + θ)Et[p̂t + π̂t+1]− θEt−1[p̂t + π̂t+1] (100)

Rearranging:

Eθt [p̂t+1] = Eθt [π̂t+1] + (1 + θ)p̂t − θEt−1[p̂t] (101)

Subtracting θp̂t−1 on both sides, we get

Eθt [p̂t+1]− pt = Eθt [π̂t+1] + θ(π̂t − θEt−1[π̂t]) (102)

which implies the diagnostic Euler equation (28).

Alternate steps to prove the equality between (Eθt [p̂t+1]− p̂t) and Eθt [π̂t+1] + θ(π̂t −
Et−1[π̂t]) are as follows. Using the BGS formula (17) presented in the main text, we

can get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[p̂t+1]− θEt−1[p̂t+1]− p̂t (103)

Adding and subtracting (1 + θ)p̂t, we get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[p̂t+1] + θp̂t (104)

Adding and subtracting θEt−1[p̂t], we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1]− θEt−1[p̂t] + θp̂t (105)

Adding and subtracting θp̂t−1, we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] + θ(π̂t − Et−1[π̂t]) (106)

Recognize that (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] ≡ Eθt [π̂t+1], we get that

Eθt [p̂t+1]− p̂t = Eθt [π̂t+1] + θ(π̂t − Et−1[π̂t]) (107)

Notice then that in order to loglinearize (98) one needs to take the path dependence

implied by DE into consideration. Because of the reference distribution, previous

beliefs held at date t − 1 constitute a state variable. One way to appreciate this fact
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is, for instance, by looking at the BGS formula (17) and notice that the DE involves

past held beliefs Et−1. Therefore, different from the RE case, one cannot multiply by

Pt on both sides of the equation and introduce Pt inside the DE operator. Due to path

dependence, computation of a real rate of interest involves the price level at t − 1.41

Since the agent is extrapolating from yesterday (t− 1) into tomorrow (t+ 1), today’s

inflation innovation π̂t − Et−1[π̂t] is also extrapolated into tomorrow when making a

forecast for price level pt+1: Current surprise inflation causes the diagnostic agent to

expect future inflation, to a degree θ, thereby reducing the subjective real interest rate.

The intuition for why this is the case is same as discussed above. Uncertainty about

future variables, pt+1 in this instance, entails a transformation of the current variables

when they enter in linear combination with future variables.

C.3 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods demand given by:

Yt(j) =

(
Pt(j)

Pt

)−ϵp
Yt (109)

where ϵp > 1 is the elasticity of substitution across intermediate goods’ varieties, Pt(j)

is price of intermediate good j, and Pt is the price of final good Yt. Each intermediate

good is produced using the technology:

Yt(j) = AtLt(j) (110)

where log(At) is an aggregate TFP process that follows an AR(1) process with persis-

tence coefficient ρa:

logAt = ρa logAt−1 + εa,t (111)

41To see this, multiply on both sides of (98) by Pt−1 and use Pt inside the DE to obtain:

u′(Ct)
Pt−1

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt−1

Pt

Pt
Pt+1

]
(108)

which can then be loglinearized to arrive at (28).
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where ϵa,t ∼ iid N(0, σ2
a). Firm pays a quadratic adjustment cost in units of final good

(Rotemberg 1982) to adjust prices:

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (112)

Firm’s per period profits are given by:

Dt ≡ Pt(j)Yt(j)−WtLt(j)−
ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (113)

Firm’s profit maximization problem

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}
(114)

where Qt,t+s is the nominal stochastic discount factor of the household. Substitute in

the demand for intermediate goods to get:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−ϵp
Yt −

Wt

At

(
Pt(j)

Pt

)−ϵp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}
(115)

Notice that Pt(j) appears in period t profits and period t + 1 adjustment costs. It

doesn’t appear anywhere else in the problem. So we can “ignore” the remaining terms

as we take the first-order condition. The monopolistically competitive firm solves the

following problem:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−ϵp
Yt −

Wt

At

(
Pt(j)

Pt

)−ϵp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt − Eθt

[
βQt,t+1

ψp
2

(
Pt+1(j)

Pt(j)
− 1

)2

Pt+1Yt+1

]}
+ other terms (116)

First order condition:

(1− ϵp)

(
Pt(j)

Pt

)−ϵp
Yt + ϵp

Wt

AtPt

(
Pt(j)

Pt

)−ϵp−1

Yt − ψp

(
Pt(j)

Pt−1(j)
− 1

)
Pt

Pt−1(j)
Yt

−ψpβEθt
[
u′(Ct+1

u′(Ct)

(
Pt+1(j)

Pt(j)
− 1

)
Pt+1(j)

Pt(j)

Pt
Pt(j)

Yt+1

]
= 0 (117)

Symmetry across all firms implies that reset price equals the aggregate price level.
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Define Πt =
Pt

Pt−1
:

(1− ϵp)Yt + ϵp
Wt

AtPt
Yt − ψp(Πt − 1)ΠtYt + ψpβEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

(118)

Divide by Yt:

(1− ϵp) + ϵp
Wt

AtPt
− ψp(Πt − 1)Πt +

ψp
Yt
βEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0 (119)

Loglinearize around the deterministic steady state such that A = 1, w = W
P

=

ωCY ν = ϵp−1

ϵp
, Π = 1, and Yt = Y . Let wt =

Wt

Pt

ϵpw(ŵt − ât)− ψpπ̂t + ψpβEθt π̂t+1 = 0 (120)

Rearrange to get

π̂t = βEθt [π̂t+1] +
ϵpw

ψp
(ŵt − ât) (121)

From the intra-temporal labor supply first order condition, we have:

ŵt = ĉt + ν(ŷt − ât) (122)

Use the resource constraint ĉt = ŷt, to rewrite the new Keynesian Phillips Curve

(NKPC):

π̂t = βEθt [π̂t+1] +
ϵpw

ψp
(1 + ν)(ŷt − ât) (123)

Note that ϵp w

ψp
= ϵp−1

ψp
. Then, the NKPC is given by

π̂t = βEθt [π̂t+1] + κ(ŷt − ât) (124)

where κ ≡ ϵp−1

ψp
(1 + ν).
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C.4 Policy Rule

The government sets nominal interest rate with the following rule:

1 + it
1 + iss

= Πϕπ
t

(
Yt
Y ∗
t

)ϕx

(125)

where Y ∗
t = At is the natural rate allocation, iss =

1
β
− 1 is the steady state nominal

interest rate, ϕπ ≥ 0, ϕx ≥ 0, and steady state inflation Π = 1. Loglinearized policy

rule is given by:

ît = ϕππ̂t + ϕx(ŷt − ât) (126)

We assume that nominal bonds are in net zero supply. There is no government spend-

ing.

C.5 Market Clearing

Total output produced is used for consumption expenditure.

Yt = Ct (127)

C.6 Equilibrium

We make the following assumption in order to guarantee the existence of a bounded

solution (Proposition 6).42

Assumption 3 (Boundedness) θ < ϕπ + κ−1(1 + ϕx)

The loglinearized equilibrium in the New Keynesian model with diagnostic expec-

tations is given by following three equations in three unknowns {ŷt, π̂t, ît} for a given

shock process {ât}.

ŷt = Eθt [ŷt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) (128)

π̂t = βEθt [π̂t+1] + κ(ŷt − ât) (129)

ît = ϕππ̂t + ϕx(ŷt − ât) (130)

42We also assume that κ(ϕπ − 1) + (1− β)ϕx > 0 to ensure a stable solution in the sense of Proposition 5.
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where κ ≡ ϵp−1

ψp
(1 + ν), and the shock processes are given by:

ât = ρaât−1 + εa,t (131)

where εa,t ∼ iid N(0, σ2
a).

Notice that we obtain a similar Phillips curve (129) to the RE case using Rotem-

berg (1982) pricing. The key to this result is that, different than with Calvo pricing,

Rotemberg pricing with DE allows one to obtain a recursion that only involves one

expectation forward. This turns out to be key for tractability. In a loglinearized RE

model with perfect inflation indexation, one can obtain identical Phillips curves using

either the Calvo or the Rotemberg price setting assumption.

C.7 Solution

C.7.1 Rational Expectations

Under RE, the solution of the model with TFP shocks is given by:

ŷt = ρa
ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
ât−1 +

ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
εa,t

(132)

π̂t =
−ρaκ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
ât−1 −

κ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
εa,t

(133)

C.7.2 Diagnostic Expectations

Guess the solution takes the following form:

ŷt = α1ât−1 + γ1εa,t; π̂t = α2ât−1 + γ2εa,t (134)

Using method of undetermined coefficients, we can solve for the coefficients. The

coefficients α1 and α2 are identical under DE and RE.

α1 = ρa
ϕx(1− βρa) + κ(ϕπ − ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
(135)

α2 =
−ρaκ(1− ρa)

(1 + ϕx − ρa)(1− βρa) + κ(ϕπ − ρa)
(136)
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Coefficients γ1 and γ2 depend on the DE parameter.

γ1 =
(1 + θ)α1 + (1 + θ)α2 [1− β(ϕπ − θ)] + κ(ϕπ − θ)

1 + ϕx + κ(ϕπ − θ)
; γ2 = β(1 + θ)α2 + κ(γ1 − 1)

(137)

C.8 Proof of Propositions 2 and 3

Because there are no government shocks, ĉt = ŷt. The equilibrium with completely

rigid prices, i.e. ψp → ∞, given by:

ŷt = Eθt [ŷt+1]− ît (138)

ît = ϕx(ŷt − ât) (139)

where ât = ρaât−1 + εa,t, ρa ∈ [0, 1), and ϵa,t ∼ iid N(0, σ2
a). Substituting the policy

rule into the Euler equation, we get:

ŷt =
1

1 + ϕx
Eθt [ŷt+1] +

ϕx
1 + ϕx

ât (140)

By forward iteration, and using the law of iterated expectations under the no-news

assumption,

ŷt = lim
T→∞

Eθt [ŷT+1]

(1 + ϕx)T+1
+

∞∑
i=1

ϕxEθt [ât+i]
(1 + ϕx)i+1

+
ϕx

1 + ϕx
ât (141)

The system is locally determinate if and only if ϕx > 0. Let ϕx > 0. Then,

ŷt =
∞∑
i=1

ϕxEθt [ât+i]
(1 + ϕx)i+1

+
ϕx

1 + ϕx
ât (142)

From the definition of the shock process, we know that, ∀ i > 0

Eθt [ât+i] = ρia(1 + θ)ât − θρi+1
a ât−1 = ρia ((1 + θ)ât − θρaât−1) (143)

We can then derive the solution for output:

ŷt =
ϕxρa(1 + θ) + ϕx(1 + ϕx − ρa)

(1 + ϕx)(1 + ϕx − ρa)
ât −

ϕxθρ
2
a

(1 + ϕx)(1 + ϕx − ρa)
ât−1 (144)
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This solution can be rewritten as:

ŷt = ρ
ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)
ât−1 +

ϕxρAθ + ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)
εa,t (145)

Volatility of output is then

V ar(ŷt) =

(
ρ

ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)

)2

V ar(ât−1) +

(
ϕxρAθ + ϕx(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρA)

)2

σ2

(146)

The first coefficient is same under rational and diagnostic expectations. Volatility

is higher under diagnostic expectations relative to rational expectations if and only if

(ϕxρAθ + ϕx(1 + ϕx))
2 > ϕ2

x(1 + ϕx)
2 (147)

⇐⇒ θ > 0 (148)

In the flexible price limit, κ→ ∞, output under DE and RE follows (from C.7):

ŷt = ρaât−1 + εa,t ≡ ât (149)

Hence, DE and RE have the same output variability when κ→ ∞ (or ψp → 0).

This completes the proof for Proposition 2.

The solution for output gap x̂t ≡ ŷt − ât is given by:

x̂t =
−ρa(1− ρa)(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρa)
ât−1 +

θϕxρa − (1− ρa)(1 + ϕx)

(1 + ϕx)(1 + ϕx − ρa)
εa,t (150)

which can also be written as

x̂t =
ϕxρa(1 + θ)− (1 + ϕx − ρa)

(1 + ϕx)(1 + ϕx − ρa)
ât −

ϕxθρ
2
a

(1 + ϕx)(1 + ϕx − ρa)
ât−1 (151)

When θ > 0, the second term denotes the reversal from revision in expectations.

In response to an unanticipated improvement in productivity, output gap can be

positive on impact if and only

θϕxρa − (1− ρa)(1 + ϕx) > 0 (152)

When θ = 0, that is rational expectations, output gap negatively co-moves with pro-

ductivity shock. Under diagnostic expectations, productivity improvements can be

expansionary on impact. This completes the proof for Proposition 3.
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C.9 Proof of Proposition 4

Note that after a one-time unanticipated shock, the solution under DE and RE coincide

at subsequent dates since there is no news. (This was shown formally in the context

of the general linear model in the previous appendix, proof of Proposition 6.) At date

t = 1, we can derive the solution under DE as follows. From the RE solution, we know

the expectations of forward looking variables :

E1ŷ2 = ρg
(1− βρg)(1− ρg) + κψ(ϕπ − ρg)

(1− βρg)(1− ρg + ϕx) + κ(ϕπ − ρ)
εg,t; (153)

E1π̂2 = ρg
κ(1− ψ)(1− ρg)− κψϕx

(1− βρg)(1− ρg + ϕx) + κ(ϕπ − ρg)
εg,t (154)

E0ŷ2 = E0π̂2 = E0π̂1 = 0 (155)

We can thus construct the diagnostic expectation terms that enter the DE model, and

simplify the model to

ŷ1 = (1 + θ)E1 [ŷ2 + π̂2 − ĝ2]− î1 + θπ̂1 + ĝ1 (156)

π̂1 = β(1 + θ)E1 [π̂2] + κŷ1 − κψĝ1 (157)

î1 = ϕππ̂1 + ϕxŷ1 (158)

Substituting the latter two equations into the Euler equation, and rearranging we get

ŷ1 =
(1 + θ)E1 [ŷ2 + (1 + βθ − βϕπ)π̂2] + [1 + (ϕπ − θ)κψ − (1 + θ)ρg]εg,1

1 + ϕx + (ϕπ − θ)κ
(159)

The corresponding RE solution can be seen with θ = 0.

We study three scenarios with analytical results:

1. When the shocks are iid (ρg = 0), the solution is:

ŷ1 =
1 + (ϕπ − θ)κψ

1 + ϕx + (ϕπ − θ)κ
εg,1 (160)

For a bounded solution (and continuity with RE solution), we assume that θ <

ϕπ + κ−1(1 + ϕx). There are two cases for the fiscal multiplier:

• ϕx < ν: The fiscal multiplier under DE is larger than under RE. The mul-

tiplier is increasing in θ, exceeds one for values of θ > ϕπ + ϕx
(1−ψ)κ . As

θ → ϕπ + κ−1(1 + ϕy), the fiscal multiplier → ∞.

• ϕx > ν: The fiscal multiplier under DE is smaller than under RE.
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2. When the government spending shocks are iid and ϕx = 0, the solution for output

under DE is :

ŷ1 =
1 + (ϕπ − θ)κψ

1 + (ϕπ − θ)κ
εg,1 (161)

For the solution to be continuous in the RE limit and bounded, we assume that

θ < ϕπ + κ−1. Since ψ = 1
1+ν

< 1, the fiscal multiplier is increasing in θ. Under

the RE limit, θ = 0, the fiscal multiplier is strictly less than one. For θ > ϕπ,

the multiplier is larger than one. Finally, the multiplier explodes to infinity as

θ → ϕπ + κ−1.

3. When prices are perfectly rigid, that is κ → 0, the solution for output is given

by:

ŷ1 =
(1− ρg)(1 + ϕx)− θρgϕx
(1 + ϕx)(1− ρg + ϕx)

εg,1 (162)

Fiscal multiplier under DE is smaller than under RE. Fiscal multiplier is decreas-

ing in θ. For θ > (1−ρg)(1+ϕx)
ρgϕx

, assuming ρg > 0, output falls under DE with

increase in government spending.

D Real Business Cycle Model

We list the equilibrium conditions for a standard RBC model. Equilibrium is given by

a sequence of seven unknowns {Ct, Kt+1, Yt, It, Nt, R
k
t , W̃t.} that satisfy the following

seven equations for a given exogenous process At and an initial value of capital stock

K0.

1

Ct
= βEθt

[
Rk
t+1 + 1− δ

Ct+1

]
(163)

W̃t = ωCtN
ν
t (164)

Kt+1 = (1− δ)Kt + It (165)

Yt = Kα
t (AtNt)

1−α (166)

Yt = Ct + It (167)

Rk
t = α

Yt
Kt

(168)

W̃t = (1− α)
Yt
Nt

(169)
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β is the discount rate, δ is depreciation rate, ν is inverse of the Frisch elasticity of

labor supply, α is the capital share, and ω is a normalizing constant in the steady

state. θ > 0 is the diagnosticity parameter. The system of loglinearized equations is

as follows (where the lower case letters denote the log-deviations form the respective

steady state values)43:

w̃t = ct + νnt (170)

ct = Eθt
[
ct+1 −

Rk

Rk + 1− δ
rkt+1

]
(171)

kt+1 = δÎt + (1− δ)kt (172)

yt = (1− α)at + αkt + (1− α)nt (173)

yt = scct + (1− sc)Ît (174)

rkt = yt − kt (175)

w̃t = yt − nt (176)

where Rk is the steady state rental rate, and sc is the steady state share of consumption

in output. The economy starts in the steady state. There is a one-time unanticipated

iid shock a1 at time 1.

D.1 Rational Expectations and Full Depreciation, δ = 1

We derive analytical result assuming full depreciation, that is δ = 1. The Euler

equation under rational expectations and full depreciation is given by:

ct − kt+1 = Et [ct+1 − yt+1] (177)

From the labor supply and labor demand conditions, we obtain

(1 + ν)nt = yt − ct (178)

When δ = 1, Ît = kt+1. Use the above equation into the Euler equation, along with

investment equation to get

Ît − yt + (1 + ν)nt = (1 + ν)Et[nt+1] (179)

43Ît is also log-deviations of investment It from its steady state value.
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Substitute in the resource constraint,

1

1− sc
[yt − scct]− yt + (1 + ν)nt = (1 + ν)Et[nt+1] (180)

⇐⇒ sc
1− sc

[yt − ct] + (1 + ν)nt = (1 + ν)Et[nt+1] (181)

⇐⇒
(
1 +

sc
1− sc

)
nt = Et[nt+1] (182)

Solution for employment is

nt = 0, ∀t ≥ 0 (183)

We can solve for the solution for other variables at dates 1 and 2:

c1 = y1 = Î1 = k2 = (1− α)a1; (184)

c2 = y2 = Î2 = k3 = α(1− α)a1 (185)

and so on.

D.2 Diagnostic Expectations and full depreciation, δ = 1

The Euler equation is

ct = Eθt [ct+1 − yt+1 + kt+1] (186)

As before, the economy starts in the steady state. There is a one-time unanticipated

iid shock a1 at time 1. From Date 2, the solution is same as rational expectations

model. Since, we have iid shocks, the solution at date 1 is:

c1 = (1 + θ)k2 (187)

Substitute into the resource constraint to get

y1 = (1 + θsc)k2 (188)

From labor supply and labor demand,

(1 + ν)n1 = y1 − c1 = −θ(1− sc)k2 (189)
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Finally, from the production function

y1 = (1− α)a1 + (1− α)n1 (190)

⇐⇒ (1 + θsc)k2 = (1− α)a1 + (1− α)n1 (191)

⇐⇒ − (1 + θsc)

θ(1− sc)
(1 + ν)n1 = (1− α)a1 + (1− α)n1 (192)

n1 = − θ(1− sc)(1− α)a1
(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

(193)

Solution is

n1 = − θ(1− sc)(1− α)a1
(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

(194)

k2 =
(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(195)

c1 =
(1 + θ)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(196)

y1 =
(1 + θsc)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(197)

Date 2 solution is :

n2 = 0 (198)

y2 = αk2 =
α(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
(199)

D.3 Analytical Proposition for RBC model

Proposition 8 (Extra Volatility: RBC Model) Consider the model given by (131),

(170)-(176). Assume that the depreciation rate δ = 1 and that ρa = 0. Output is less

volatile under DE than under RE: V ar(ŷt)DE < V ar(ŷt)RE.

Volatility of output at date 1 is lower under DE compared to RE if and only if

(1 + θsc)(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1 (200)

which is true. Further, note that volatility of output at date 1 under DE is decreasing

in ν. Similarly, we can show that volatility of output under diagnostic expectations

is lower at all future horizons as well. For example, Volatility of output at date 2 is
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lower under DE compared to RE if and only if

(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1 (201)

which is true since 1 + θsc > 1 and (1− α)θ(1− sc) > 0.

D.4 Numerical Results on Extra Volatility: NK and RBC

Models

To numerically demonstrate the excess volatility in the NK model, we use the calibra-

tion discussed in Table 4, which is our standard calibration. Stationary TFP follows

an AR(1) process with persistence 0.9 and standard deviation 0.02. We set the dis-

count factor β to 0.99. For the RBC model, we set the capital share α to 0.2 and the

capital depreciation rate δ to 0.025. For the NK model, we set ϕπ = 1.5, ϕx = 0.5, and

κ = 0.05. We also set the diagnosticity parameter θ to one.

Table 4: Calibration: The NK and RBC models

Parameter Value

Common to Both Models

θ Diagnosticity 1

β Discount factor 0.99

NK model

ν Inv. Frisch elasticity 2

ϕπ Taylor rule inflation 1.5

ϕx Taylor rule output gap 0.5

κ Slope of the Phillips curve 0.05

RBC model

α Capital share 0.2

δ Capital depreciation rate 0.025

Shock Process

ρa Shock persistence (stationary TFP) 0.9

σa Standard dev. (stationary TFP) 0.02

Notes: The NK model is given by (128) to (130) and the RBC model is given by (170) to (176). The shock process is given by (131).

Panel a) in Table 5 shows unconditional volatilities of output growth, and consump-
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Table 5: Model-Implied Volatilities with Stationary TFP Shocks

(a) New Keynesian Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0182 0.0296 63%
Consumption 0.0182 0.0296 63%
Investment – – –

(b) Real Business Cycle Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0204 0.0188 -8%
Consumption 0.0052 0.0103 96%
Investment 0.1147 0.0816 -29%

Notes: The table reports the standard deviations of output growth, consumption growth and investment growth in the New Keynesian
(NK) model and the RBC model in Panels (a) and (b) respectively. Final column titled “Percentage Increase” shows the percentage
increase in standard deviation under the diagnostic expectations model relative to the rational expectations benchmark. There is one
shock process in the two models. See Table 4 for the parameters.

tion growth under diagnostic and rational expectations. Since there is no government

spending or investment, output growth and consumption growth are equivalent in the

NK model. We find that the output gap under diagnostic expectations exhibits 63 per-

cent higher standard deviation relative to the output gap under rational expectations.

Panel b) in Table 5 shows unconditional volatilities of output growth, consumption

growth, and investment growth, both under diagnostic and rational expectations in

the baseline RBC model. Consumption growth is twice as volatile under diagnostic

expectations than under rational expectations. On the other hand, investment growth

and output growth are dampened under diagnostic expectations due to the general

equilibrium adjustment of the interest rate. Diagnosticity, therefore, does not always

generate extra amplification.

E A Medium-Scale DSGE model

E.1 Model Ingredients

The model follows the exposition in BLL. The economy comprises of following agents:

a continuum of households supplying differentiated labor, a continuum of firms pro-

ducing differentiated goods, a perfectly competitive final goods firm, a perfectly com-

petitive labor agency that provides the composite labor input demanded by firms, and

a government in charge of fiscal and monetary policy.
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E.1.1 Monopolistically Competitive Producers

Assume there is a continuum of differentiated intermediate good producers that sell

the intermediate good Yjt. A perfectly competitive firm aggregates intermediate goods

into a final composite good Yt =

[∫ 1

0
Y

ϵp,t−1

ϵp,t

jt dj

] ϵp,t
ϵp,t−1

, where ϵp,t > 1 is time-varying

elasticity of demand and denote the time-varying price markup with λpt =
ϵp,t
ϵp,t−1

. The

iso-elastic demand for intermediate good j is given by: Yjt =
(
Pjt

Pt

)−ϵp,t
Yt, where

Pt is the aggregate price index and Pjt is the price of intermediate goods j. Each

intermediate good j is produced by a price-setting monopolistically competitive firm

using labor Ljt and physical capital Kjt:

Yjt = (AtLjt)
1−α Kα

jt (202)

where the TFP process At is the sum of two components (in logs):

logAt = logZt + log Ξt (203)

The variable Zt denotes a non-stationary TFP series that evolves according to:

Zt
Zt−1

=

(
Zt−1

Zt−2

)ρζ

G
1−ρζ
ζ exp(εζ,t); εζ,t ∼ iid N(0, σ2

ζ ) (204)

where ρζ is the persistence of the shock process, and εζ,t is a random disturbance that

causes deviations of the TFP growth from its balanced growth rate Gζ . The stationary

TFP evolves as follows:

log Ξt = ρξ log Ξt−1 + εξ,t; εξ,t ∼ iid N(0, σ2
ξ ) (205)

where ρξ is the persistence of the shock process, and εξ,t is an i.i.d shock with variance

σ2
ξ . (We define at ≡ logAt, ζt ≡ logZt, ξt ≡ log Ξt, Ga,t ≡ At/At−1, and Gζ,t ≡
Zt/Zt−1.)

Following BLL, we assume that

ρζ = ρξ ≡ ρ (206)
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and that the variances satisfy the following restriction44

ρσ2
ζ = (1− ρ)2σ2

ξ (207)

While agents observe the TFP process as a whole, they do not observe two com-

ponents ζt and ξt separately. Considering the idea that agents have more information

than merely about productivity, agents observe a noisy signal st about the permanent

component of TFP:

st = ζt + εs,t; εs,t ∼ iid N(0, σ2
s) (208)

where εs,t is an i.i.d. normal shock, which affects agents’ beliefs but is independent of

fundamentals. This noisy signal relates to the additional informative signal that agents

receive which is a straightforward interpretation of Equation (208). Ultimately, the

presence of this noisy information helps the econometrician make inferences about the

(unobserved) long-term productivity trend by looking at the behavior of consumption.

Firms choose inputs to minimize total cost each period. Marginal cost, independent

of firm-specific variables, is given by mct =
1

A1−α
t

(
Rk

t /Pt

α

)α (
Wt/Pt

1−α

)1−α
, where

Rk
t

Pt
and

Wt

Pt
denote aggregate rental rate of capital and real wage. A firm j pays a quadratic

adjustment cost in units of final good (Rotemberg 1982) to adjust its price Pjt. The

cost is given by ψp

2

(
Pjt

Π̃t−1Pjt−1
− 1

)2

PtYt, where ψp ≥ 0 regulates the adjustment costs.

Price change is indexed to Π̃t−1 = Π̄1−ιpΠ
ιp
t−1, where ιp governs indexation between

previous period inflation rate Πt−1 and steady state inflation rate Π̄. Firm’s per period

profits are given by: Djt ≡ PjtYjt − PtmctYjt − ψp

2

(
Pjt

Π̃t−1Pjt−1
− 1

)2

PtYt. Each period,

the firm chooses Pjt to maximize present discounted value of real profits:

max
Pjt

{
ΛtDjt

Pt
+ Eθt

[
∞∑
s=1

Λt+sDjt+s

Pt+s

]}
(209)

where Λt is the marginal utility of consumption in period t, and Eθt [ · ] is the diag-

nostic expectation operator regulated by parameter θ. Notice that we write dynamic

maximization problems by explicitly separating time t choice variables from the ex-

pectation of future choice variables. This separation is crucial for solving the model

with diagnostic expectations, and is a consequence of the technical issues discussed in

Section 3.

44As shown in BLL, these restrictions imply that the univariate process for at is a random walk with variance
σ2
a.
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E.1.2 Households

There is a continuum of monopolistically competitive households, indexed by i ∈ [0, 1],

supplying a differentiated labor input Li,t. A perfectly competitive employment agency

aggregates various labor types into a composite labor input Lt supplied to firms, in

a Dixit-Stiglitz aggregator: Lt =

[∫ 1

0
L

ϵw,t−1

ϵw,t

i,t di

] ϵw,t
ϵw,t−1

, where ϵw,t > 1 is time-varying

elasticity of demand. Define λwt = ϵw,t

ϵw,t−1
as time-varying wage markup. The iso-elastic

demand for labor input i is given by: Li,t =
(
Wi,t

Wt

)−ϵw,t

Lt, where Wi,t is household i’s

wage rate, and Wt is the aggregate wage rate that the household takes as given.

The household i has following lifetime-utility at time t:(
log(Ci,t − hC̃t−1)−

ω

1 + ν
L1+ν
i,t − ψwi,t

)
+ Eθt

[
Σ∞
s=t+1β

s−t
(
log(Ci,s − hC̃s−1)−

ω

1 + ν
L1+ν
i,s − ψwi,s

)]
(210)

where h is the degree of habit formation on external habits over aggregate consumption

C̃t−1, which the household takes as given, ν > 0 is inverse of the Frisch elasticity of

labor supply, ω > 0 is a parameter that pins down the steady-state level of hours,

and the discount factor β satisfies 0 < β < 1. ψwi,t is the loss in utility in adjusting

wages. We assume a quadratic adjustment cost given by ψwi,t =
ψw

2

[
Wit

Π̃w
t−1Wit−1

− 1
]2
,

where ψw ≥ 0 is a parameter, and wage contracts are indexed to productivity and

price inflation. We assume Π̃w
t−1 = GaΠ̄

1−ιw (exp(εζ,tεξ,t)Πt−1)
ιw with 0 ≤ ιw < 1.

The household’s budget constraint in period t is given by

PtCi,t + PtIi,t +
Bi,t+1

1 + it
= Bi,t +Wi,tLi,t +Dt + Tt +RK

t ui,tK
u
i,t − Pta(ui,t)K

u
i,t (211)

where Ii,t is investment, Wi,tLi,t is labor income, and Bi,t is income from nominal

bonds paying nominal interest rate it. Households own an equal share of all firms, and

thus receive Dt dividends from profits. Finally, each household receives a lump-sum

government transfer Tt.

The households own capital, Ku
i,t, and choose the utilization rate, ui,t. The amount

of effective capital, Ki,t, that the households rent to the firms at nominal rate RK
t is

given by Ki,t = ui,tK
u
i,t. The (nominal) cost of capital utilization is Ptχ(ui,t) per unit

of physical capital. As in the literature, we assume χ(1) = 0 in the steady state and

χ′′ > 0. Following GHLS, we assume investment adjustment costs, S
(

Ii,t
GaIi,t−1

)
, in the

production of capital, where Ga is the steady state growth rate of At. Law of motion
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for capital is as follows:

Ku
i,t+1 = µt

[
1− S

(
Ii,t

GaIi,t−1

)]
Ii,t + (1− δk)K

u
i,t (212)

where δk denotes depreciation rate, and µt is an exogenous disturbance to the marginal

efficiency of investment that follows:

log µt = ρµ log µt−1 + εµ,t; εµ,t ∼ iid N(0, σ2
µ) (213)

As in the literature, we assume that S(1) = S ′(1) = 0, and calibrate S ′′(1) > 0.

E.1.3 Government

The central bank follows a Taylor rule in setting the nominal interest rate it. It

responds to deviations in (gross) inflation rate Πt from its target rate Π̄ and output.

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR
[(

Πt

Π̄

)ϕπ

Y
ϕy
t

]1−ρR

exp(λmpt ) (214)

with 0 < ρR < 1, ϕπ ≥ 0, and ϕy ≥ 0. iss is the steady state nominal interest rate,

and λmpt follows the process

log λmpt = ρmp log λ
mp
t−1 + εmp,t; εmp,t ∼ N(0, σ2

mp) (215)

We assume government balances budget every period PtTt = PtGt, where Gt is

the government spending. Gt is determined exogenously as as a fraction of GDP:

Gt =
(
1− 1

λgt

)
Yt where the government spending shock follows the process:

log λgt = (1− ρg) log λ
g + ρg log λ

g
t−1 + εg,t; εg,t ∼ N(0, σ2

g) (216)

λg is the steady state share of government spending in final output.

E.1.4 Market Clearing

We focus on a symmetric equilibrium where all intermediate goods producing firms

and households make the same decisions. Therefore, we can drop subscripts i and j.

The aggregate production function, in the symmetric equilibrium, is then given by:

Yt = (AtLt)
1−αKα

t , since Kt = Ki,t = Kjt and Nt = Ni,t = Njt. The market clearing
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for the final good, in the symmetric equilibrium, requires that

Yt = Ct + It + χ(ut)K
u
t +Gt +

ψp
2

[
Πt

Π̃t−1

− 1

]2
Yt (217)

This completes the presentation of the DSGE model.

E.2 Stationary Allocation

We normalize the following variables :

yt = Yt/At (218)

ct = Ct/At (219)

kt = Kt/At (220)

kut = Ku
t /At−1 (221)

It = It/At (222)

wt = Wt/(AtPt) (223)

rkt = Rk
t /Pt (224)

λt = ΛtAt (225)

Definition 1 (Normalized Equilibrium) 18 endogenous variables {λt, it, ct, yt, Πt,

mct, Π̃t−1, Π
w
t , Π̃

w
t−1, wt, Lt, k

u
t+1, r

K
t , It, qt, ut, kt, Ga,t}, 8 endogenous shock processes

{Gζ,t,Ξt, st, µt, λ
p
t , λ

w
t , λ

mp
t , λgt}, 8 exogenous shocks {εζ,t, εξ,t, εs,t, εµ,t, εp,t, εw,t, εmp,t, εg,t}

given initial values of kut−1.

Consumption Euler Equation

λt
Ga,tΠt

= β(1 + it)Eθt
[

λt+1

Ga,tGa,t+1

1

ΠtΠt+1

]
(226)

λt =
1

ct − hct−1

Ga,t

(227)

Price-setting

(1−ϵp,t)+ϵp,t mct−ψp
(

Πt

Π̃t−1

− 1

)
Πt

Π̃t−1

+ψp
βΠt

λtyt
Eθt

[
λt+1

(
Πt+1

Π̃t

− 1

)
Πt+1

Π̃t

yt+1

Πt

]
= 0

(228)

Π̃t−1 = Π̄1−ιpΠ
ιp
t−1 (229)
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Wage-setting

ψw

[
Πw
t

Π̃w
t−1

− 1

]
Πw
t

Π̃w
t−1

= ψwβEθt
[
Πw
t+1

Π̃w
t

− 1

]
Πw
t+1

Π̃w
t

+ Ltλtϵw,t

[
ω
Lνt
λt

− ϵw,t − 1

ϵw,t
wt

]
(230)

Π̃w
t−1 = GaΠ̄

1−ιw(exp(εζ,t) exp(εξ,t)Πt−1)
ιw (231)

Πw
t =

wt
wt−1

ΠtGa,t (232)

Capital Investment

kut+1 = µt

[
1− S

(
It
It−1

Ga,t

Ga

)]
It + (1− δk)

kut
Ga,t

(233)

qt =
βGa,t

λt
Eθt

[
λt+1

Ga,tGa,t+1

(
rKt+1ut+1 − χ(ut+1) + qt+1(1− δk)

)]
(234)

qtµt

[
1− S

(
It
It−1

Ga,t

Ga

)
− S ′

(
It
It−1

Ga,t

Ga

)
It
It−1

Ga,t

Ga

]
+
βGa,t

λt
Eθt

[
µt+1

λt+1

Ga,t

qt+1
Ga,t+1

Ga

(
It+1

It

)2

S ′
(
It+1

It
Ga,t+1

Ga

)]
= 1 (235)

Capital Utilization Rate

kt = ut
kut
Ga,t

(236)

rKt = χ′(ut) (237)

Production Technologies

yt = kαt L
1−α
t (238)

kt
Lt

=
wt
rkt

α

1− α
(239)

mct =
(rkt )

αw1−α
t

αα(1− α)1−α
(240)

Government

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR
[(

Πt

Π̄

)ϕπ

Y
ϕy
t

]1−ρR

exp(λmpt ) (241)

80



Market Clearing

yt = ct + It + χ(ut)
kut
Ga,t

+

(
1− 1

λgt

)
yt (242)

TFP Growth Rate

logGa,t = logGζ,t + (log Ξt − log Ξt−1) (243)

E.3 Steady State

1 = β
1

Ga

1 + i

Π
(244)

λ =
Ga

c(Ga − h)
(245)

mc =
ϵp

ϵp − 1
(246)

ωLν

λ
=
ϵw − 1

ϵw
w (247)

Πw = ΠGa (248)

Π = Π̄ (249)

q = 1 (250)

u = 1 (251)

(1− 1− δk
Ga

)ku = I (252)

1 = β

[
1

Ga

(
rK + (1− δk)

)]
(253)

k =
ku

Ga

(254)

rK = χ′(1) (255)

y = kαL1−α (256)

rk =
ϵp

ϵp − 1
α
y

k
(257)

w =
ϵp

ϵp − 1
(1− α)

y

L
(258)

y = c+ I+
(
1− 1

λg

)
y (259)
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S(1) = S ′(1) = 0;S” > 0 (260)

Ga = Gζ (261)

E.4 Loglinearized Model

Consumption Euler Equation

λ̂t − Ĝa,t − π̂t = ît + Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 − π̂t − π̂t+1

]
(262)

λ̂t +
Ga

Ga − h
ĉt −

h

Ga − h

(
ĉt−1 − Ĝa,t

)
= 0 (263)

Price-setting

π̂t = βEθt [π̂t+1 − ιpπ̂t] + ιpπ̂t−1 +
ϵp − 1

ψp
m̂ct + λ̂p,∗t (264)

where λ̂p,∗t is the normalized price-markup shock process. Let the un-normalized pro-

cess be denoted with λ̂pt . Then λ̂
p,∗
t = ϵp−1

ψp
λ̂pt . In steady state λp = ϵp

ϵp−1

Wage-setting

π̂wt = βEθt
[
π̂wt+1 − ιwπ̂t − ιwĜa,t+1

]
+ ιwπ̂t−1+ ιwĜa,t+

ϵwωL
1+ν

ψw

[
νL̂t − ŵt − λ̂t

]
+ λ̂w,∗t

(265)

where λ̂w,∗t is the normalized wage-markup shock process. Let the un-normalized wage

markup process be denoted with λ̂wt . Then λ̂w,∗t = ϵwωL1+ν

ψw
λ̂wt . In steady state λw =

ϵw
ϵw−1

π̂wt = ŵt − ŵt−1 + π̂t + Ĝa,t (266)

Capital Investment

k̂ut+1 =
I
ku

(
Ît + µ̂t

)
+

1− δk
Ga

(
k̂ut − Ĝa,t

)
(267)

q̂t− Ĝa,t+ λ̂t = Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 +

rK

rK + 1− δk
r̂Kt+1 +

1− δk
rK + 1− δk

q̂t+1

]
(268)

q̂t + µ̂t − S”(1)
(
Ît − Ît−1 + Ĝa,t

)
+ βS”(1)Eθt

(
Ît+1 − Ît + Ĝa,t+1

)
= 0 (269)
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Capital Utilization Rate

k̂t = ût + k̂ut − Ĝa,t (270)

r̂Kt =
χ”(1)

χ′(1)
ût (271)

Production Technologies

ŷt = αk̂t + (1− α)L̂t (272)

r̂Kt = ŵt + L̂t − k̂t (273)

m̂ct = αr̂Kt + (1− α)ŵt (274)

Government

ît = ρRît−1 + (1− ρR) (ϕππ̂t + ϕyŷt) + λ̂mpt (275)

Market Clearing
1

λg
ŷt =

c

y
ĉt +

I
y
Ît +

χ′(1)k

y
ût +

1

λg
λ̂gt (276)

TFP Growth Rate

Ĝa,t = Ĝζ,t + ξ̂t − ξ̂t−1 (277)

ât = ζ̂t + ξ̂t (278)

where ât and ζ̂t are defined as log deviations of At and Zt from their initial values.

Law of Motion of Shocks

Ĝζ,t = ρζĜζ,t−1 + εζ,t (279)

ξ̂t = ρξ ξ̂t−1 + εξ,t (280)

µ̂t = ρµµ̂t−1 + εµ,t (281)

λ̂mpt = ρmpλ̂
mp
t−1 + εmp,t (282)

λ̂gt = ρgλ̂
g
t−1 + εg,t (283)

λ̂p,∗t = ρpλ̂
p,∗
t−1 + εp,t − ϕpεp,t−1 (284)

λ̂w,∗t = ρwλ̂
w,∗
t−1 + εw,t − ϕwεw,t−1 (285)
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Disturbances

TFP growth shock εζ,t ∼ N(0, σ2
ζ ) (286)

Stationary TFP shock εξ,t ∼ N(0, σ2
ξ ) (287)

Noise shock εs,t ∼ N(0, σ2
s) (288)

MEI shock εµ,t ∼ N(0, σ2
µ) (289)

Monetary policy shock εmp,t ∼ N(0, σ2
mp) (290)

Government spending shock εg,t ∼ N(0, σ2
g) (291)

Price markup shock εp,t ∼ N(0, σ2
p) (292)

Wage markup shock εw,t ∼ N(0, σ2
w) (293)

E.5 Diagnostic Kalman Filter

The solution of the medium-scale model featuring a diagnostic Kalman filter can be

conveniently obtained by exploiting the existence of a perfect-information equivalent

model (Blanchard, L’Huillier, and Lorenzoni 2013a). First, write the diagnostic model

in its RE representation. Then, use Lemma 2 of Blanchard et al. (2013a) to get the

perfect-information equivalent model. The latter can be solved using standard DSGE

packages, such as Dynare.
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E.6 Prior Distribution of the Parameters

The following parameters are fixed in the estimation procedure as shown in Table 6.

The depreciation rate δk is fixed at 0.025, and the discount factor β is set to 0.99. The

Dixit-Stiglitz aggregator for the goods (ϵp) and for labor services (ϵw) are fixed at 6.

The parameter affecting the level of disutility from working (ω) is set to 1, and the

steady-state share of government spending to final output is fixed at 1.2.

Table 6: Fixed Parameters

Parameter Value

β Discount factor 0.99

δk Capital depreciation rate 0.025

1− 1
λg

Government spending share 0.20

ω Labor preference 1

ϵp Elasticity of goods demand 6

ϵw Elasticity of labor demand 6

Notes: The table reports parameters fixed in the estimation procedure for both DE and RE.

Prior distributions on price and wage rigidity parameters (ψp and ψw) are as in

Gust, Herbst, López-Salido, and Smith (2017).
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Table 7: Prior Distribution

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 1 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 5 1

ψp Rotemberg prices Normal 100 25
ψw Rotemberg wages Normal 3000 5000
ν inv. Frisch elas. Gamma 2 0.75
S′′(1) inv. adj. costs Normal 4 1
ρR m.p. rule Beta 0.5 0.2
ϕπ m.p. rule Normal 1.5 0.3
ϕx m.p. rule Normal 0.005 0.005

Technology Shocks
ρ persist. Beta 0.6 0.2
σa tech. shock s.d. Inv. Gamma 0.5 1
σs noise shock s.d. Inv. Gamma 1 1

Investment-Specific Shocks
ρµ persist. Beta 0.6 0.2
σµ s.d. Inv. Gamma 5 1.5

Markup Shocks
ρp persist. Beta 0.6 0.2
ϕp ma. comp. Beta 0.5 0.2
σp s.d. Inv. Gamma 0.15 1
ρw persist. Beta 0.6 0.2
ϕw ma. comp. Beta 0.5 0.2
σw s.d. Inv. Gamma 0.15 1

Policy Shocks
ρmp persist. Beta 0.4 0.2
σmp s.d. Inv. Gamma 0.15 1
ρg persist. Beta 0.6 0.2
σg s.d. Inv. Gamma 0.5 1

Measurement Errors

σmey s.d. Inv. Gamma 0.5 1

σmec s.d. Inv. Gamma 0.5 1
σmei s.d. Inv. Gamma 0.5 1
σmeπ s.d. Inv. Gamma 0.5 1
σmer s.d. Inv. Gamma 0.5 1

Notes: The table reports the prior distribution of structural parameters in the estimation procedure. The diagnosticity parameter θ is
fixed at 0 under RE.
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Figure 8: Posterior Distribution of Diagnosticity Parameter

(a) Prior centered at 1
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(b) Prior centered at 0
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Notes: Panels a) and b) depict the prior and posterior density of θ when the prior is centered at 1 and 0, respectively. The red, solid
lines denote the prior distribution of θ, which follows a Normal distribution with standard deviation 0.3. The black, solid lines (the
green, dashed vertical line) denote the posterior distribution (the posterior mean) of θ.

Table 8: Model-Implied Volatilities in the Medium-Scale DSGE Model

Variable Diagnostic Rational Percentage
Expectations Expectations Increase

Consumption 0.7939 0.6445 23%
Output 1.0055 0.8928 13%
Price Inflation 0.5308 0.4682 13%
Wage Inflation 0.9411 0.8498 11%
Real Rate 0.7532 0.5516 37%

Notes: The table reports the standard deviations of consumption growth, output growth, price inflation, wage inflation, and the real
rate in the medium-scale DSGE model. The final column entitled “Percentage Increase” shows the percentage increase in standard
deviation under the DE model relative to the RE benchmark (setting θ = 0 along with parameter estimates in Table 1). There are
eight structural shocks in the model, as in Blanchard et al. (2013a): the TFP growth shock, TFP level shock, noise shock, marginal
efficiency of investment (MEI) shock, price markup shock, wage markup shock, monetary policy shock, and government spending
shock.
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F Robustness

F.1 Prior on the Diagnosticity Parameter θ Centered at Zero

Table 9: Posterior Distribution: Prior Centered at Zero

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.6537 [0.5193, 0.7884]
α cap. share 0.1340 [0.1227, 0.1455] 0.1390 [0.1278, 0.1505]
h habits 0.7110 [0.6810, 0.7415] 0.5803 [0.5424, 0.6178]
χ′′(1)
χ′(1) cap. util. costs 5.0273 [3.4169, 6.6350] 5.5929 [3.9095, 7.2242]

ψp Rotemberg prices 124.51 [97.470, 151.19] 181.84 [126.66, 188.88]
ψw Rotemberg wages 538.73 [231.71, 833.33] 9710.9 [4510.5, 14712.]
ν inv. Frisch elas. 3.6778 [2.4841, 5.0289] 1.2832 [0.5012, 1.9475]
S′′(1) inv. adj. costs 6.9600 [5.8331, 8.0849] 7.0701 [6.0111, 8.1332]
ρR m.p. rule 0.5920 [0.5541, 0.6304] 0.6820 [0.6528, 0.7121]
ϕπ m.p. rule 1.5297 [1.4093, 1.6481] 1.0682 [1.0001, 1.2046]
ϕx m.p. rule 0.0062 [0.0001, 0.0111] 0.0013 [0.0001, 0.0030]
Technology Shocks
ρ persist. 0.8584 [0.8381, 0.8786] 0.9535 [0.9352, 0.9716]
σa tech. shock s.d. 1.4050 [1.2824, 1.5249] 1.5258 [1.3896, 1.6601]
σs noise shock s.d. 0.5375 [0.3182, 0.7481] 1.0594 [0.3781, 1.7574]
Investment-Specific Shocks
ρµ persist. 0.3066 [0.2493, 0.3630] 0.3310 [0.2631, 0.4003]
σµ s.d. 18.947 [15.038, 22.845] 20.2121 [16.369, 23.989]
Markup Shocks
ρp persist. 0.8748 [0.8303, 0.9205] 0.8205 [0.7663, 0.8769]
ϕp ma. comp. 0.5874 [0.4748, 0.7023] 0.5563 [0.4380, 0.6806]
σp s.d. 0.1623 [0.1337, 0.1905] 0.1988 [0.1700, 0.2271]
ρw persist. 0.9969 [0.9940, 0.9999] 0.6543 [0.5146, 0.7978]
ϕw ma. comp. 0.5708 [0.3867, 0.7587] 0.5142 [0.2882, 0.7444]
σw s.d. 0.4449 [0.3514,0.5354] 0.4490 [0.3836, 0.5142]
Policy Shocks
ρmp persist. 0.0296 [0.0100, 0.0516] 0.0197 [0.0009, 0.0383]
σmp s.d. 0.3751 [0.3394, 0.4099] 0.3283 [0.3000, 0.3556]
ρg persist. 0.9332 [0.9051, 0.9619] 0.8974 [0.8682, 0.9275]
σg s.d. 0.3699 [0.3376, 0.4011] 0.3706 [0.3384, 0.4022]
Measurement Errors
σME
y s.d. 0.4968 [0.4464, 0.5467] 0.5034 [0.4529, 0.5533]

σME
c s.d. 0.4107 [0.3607, 0.4594] 0.4255 [0.3739, 0.4764]
σME
i s.d. 1.4291 [1.2541, 1.6033] 1.4514 [1.2692, 1.6284]
σME
r s.d. 0.2681 [0.2406, 0.2949] 0.2285 [0.2018, 0.2551]
σME
π s.d. 0.1614 [0.1409, 0.1817] 0.1482 [0.1267, 0.1693]

log Marg. Likelihood -1814.82 -1847.38

Notes: Priors are given in Table 7. The prior on θ is distributed Normal with mean 0 and std. dev. 0.3.
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F.2 Smets and Wouters (2007)

Table 10: Prior Distribution: Smets and Wouters (2007b)

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 0.5 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.7 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 0.5 0.15

ψp Rotemberg prices Normal 350 75
ψw Rotemberg wages Normal 1000 1000
ν inv. Frisch elas. Normal 2 0.75
S′′(1) inv. adj. costs Normal 4 1.5
ρR m.p. rule Beta 0.75 0.1
ϕπ m.p. rule Normal 1.5 0.25
ϕx m.p. rule Normal 0.125 0.05
ϕdx m.p. rule Normal 0.125 0.05
ιp index. prices Beta 0.5 0.15
ιw index. wages Beta 0.5 0.15
100Ga s.s. growth rate Normal 0.4 0.1
logL s.s. hours Normal 0 2
100(π − 1) s.s. infl. Gamma 0.625 0.1
100(β−1 − 1) disc. factor Gamma 0.25 0.1
F share of fixed costs Normal 1.25 0.125
σc cons. curvature Normal 1.5 0.375

Shocks
ρa persist. tech. Beta 0.5 0.2
σa s.d. tech. Inv. Gamma 0.1 2
ρµ persist. inv. Beta 0.5 0.2
σµ s.d. inv. Inv. Gamma 0.1 2
ρb persist. pref. Beta 0.5 0.2
σb s.d. pref. Inv. Gamma 0.1 2
ρp persist. prices Beta 0.5 0.2
ϕp ma. comp. prices Beta 0.5 0.2
σp s.d. prices Inv. Gamma 0.1 2
ρw persist. wages Beta 0.5 0.2
ϕw ma. comp. wages Beta 0.5 0.2
σw s.d. wages Inv. Gamma 0.1 2
ρmp persist. mon. Beta 0.5 0.2
σmp s.d. mon. Inv. Gamma 0.1 2
ρg persist. fisc. Beta 0.5 0.2
σg s.d. fisc Inv. Gamma 0.1 2

Notes: The table reports the prior distribution of structural parameters in the estimation procedure for Smets and Wouters (2007b).
The diagnosticity parameter θ is fixed at 0 under RE.
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Table 11: Posterior Distribution: Smets and Wouters (2007b)

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.4435 [0.1822, 0.6928]
α cap. share 0.1874 [0.1575, 0.2169] 0.1884 [0.1588, 0.2178]
h habits 0.7100 [0.6385, 0.7839] 0.7027 [0.6334, 0.7725]
χ′′(1)
χ′(1) cap. util costs 0.6241 [0.4539, 0.8013] 0.5785 [0.4016, 0.7549]

ψp Rotemberg prices 399.36 [292.11, 506.07] 383.13 [272.30, 490.97]
ψw Rotemberg wages 2266.5 [1083.3, 3407.9] 2265.1 [1092.8, 3375.0]
ν inv. Frisch elas. 1.9577 [1.0626, 2.7971] 2.0293 [1.1717, 2.8701]
S′′(1) inv. adj. costs 5.6924 [3.9384, 7.3949] 5.7666 [4.0637, 7.4253]
ρR m.p. rule 0.7962 [0.7560, 0.8381] 0.8132 [0.7754, 0.8515]
ϕπ m.p. rule 2.0801 [1.7974, 2.3631] 2.0199 [1.7277, 2.3092]
ϕx m.p. rule 0.0836 [0.0450, 0.1220] 0.0839 [0.0478, 0.1199]
ϕdx m.p. rule 0.2412 [0.1943, 0.2886] 0.2327 [0.1862, 0.2790]
ιp index. prices 0.3075 [0.1491, 0.4647] 0.2268 [0.0905, 0.3584]
ιw index. wages 0.6287 [0.4343, 0.8238] 0.5712 [0.3695, 0.7756]
100Ga s.s. growth rate 0.4206 [0.3950, 0.4467] 0.4226 [0.3982, 0.4465]
logL s.s. hours 0.6699 [-1.169, 2.5050] 0.6560 [-1.147, 2.4377]
100(π − 1) s.s. infl. 0.7775 [0.6156, 0.9427] 0.7543 [0.5932, 0.9219]
100(β−1 − 1) disc. factor 0.1640 [0.0708, 0.2523] 0.1671 [0.0731, 0.2576]
F share of fixed costs 1.5447 [1.4160, 1.6777] 1.5845 [1.4549, 1.7142]
σc cons. curvature 1.3804 [1.1204, 1.6347] 1.3740 [1.1540, 1.5844]

Shocks
ρa persist. tech. 0.9592 [0.9384, 0.9806] 0.9528 [0.9331, 0.9731]
σa s.d. tech. 0.4658 [0.4174, 0.5145] 0.4623 [0.4152, 0.5101]
ρµ persist. inv. 0.7815 [0.6861, 0.8806] 0.7129 [0.6197, 0.8095]
σµ s.d. inv. 0.3405 [0.2507, 0.4282] 0.4528 [0.3726, 0.5315]
ρη persist. pref. 0.3829 [0.1746, 0.6025] 0.2429 [0.0848, 0.3919]
ση s.d. pref. 0.1747 [0.1104, 0.2358] 0.2359 [0.1944, 0.2778]
ρp persist. prices 0.8709 [0.7877, 0.9529] 0.8706 [0.7914, 0.9506]
ϕp ma. comp. prices 0.6564 [0.4567, 0.8613] 0.6710 [0.4991, 0.8443]
σp s.d. prices 0.1044 [0.0671, 0.1409] 0.1407 [0.1116, 0.1695]
ρw persist. wages 0.9600 [0.9327, 0.9882] 0.9672 [0.9455, 0.9900]
ϕw ma. comp. wages 0.8620 [0.7775, 0.9500] 0.8817 [0.8188, 0.9482]
σw s.d. wages 0.1899 [0.1430,0.2370] 0.2432 [0.2070, 0.2793]
ρmp persist. mon. 0.1216 [0.0287, 0.2064] 0.1389 [0.0383, 0.2316]
σmp s.d. mon. 0.2520 [0.2252, 0.2780] 0.2467 [0.2217, 0.2713]
ρg persist. fisc. 0.9806 [0.9681, 0.9933] 0.9802 [0.9673, 0.9935]
σg s.d. fisc. 0.5224 [0.4720, 0.5731] 0.5260 [0.4746, 0.5755]
ρga corr. 0.5255 [0.3800, 0.6717] 0.5202 [0.3745, 0.6670]

log Marg. Likelihood -897.91 -900.69

Notes: Priors are given in Table 10.
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F.3 Justiniano, Primiceri, and Tambalotti (2010)

Table 12: Prior Distribution: Justiniano, Primiceri, and Tambalotti (2010a)

Parameter Description Distribution Mean Std. dev

θ diagnosticity Normal 0.5 0.3
α cap. share Normal 0.3 0.05
h habits Beta 0.5 0.1
χ′′(1)
χ′(1) cap. util. costs Gamma 5 1

ψp Rotemberg prices Normal 100 25
ψw Rotemberg wages Normal 3000 5000
ν inv. Frisch elas. Gamma 2 0.75
S′′(1) inv. adj. costs Normal 4 1
ρR m.p. rule Beta 0.6 0.2
ϕπ m.p. rule Normal 1.7 0.3
ϕx m.p. rule Normal 0.13 0.05
ϕdx m.p. rule Normal 0.13 0.05
ιp index. prices Beta 0.5 0.15
ιw index. wages Beta 0.5 0.15
100Ga s.s. growth rate Normal 0.5 0.03
λp s.s. markup prices Normal 0.15 0.05
λw s.s. markup wages Normal 0.15 0.05
logL s.s. log hours Normal 0 0.5
100(π − 1) s.s. infl. Normal 0.5 0.1
100(β−1 − 1) disc. factor Gamma 0.25 0.1

Shocks
ρa persist. tech. Beta 0.6 0.2
σa s.d. tech. Inv. Gamma 0.5 1
ρµ persist. inv. Beta 0.6 0.2
σµ s.d. inv. Inv. Gamma 0.5 1
ρb persist. pref. Beta 0.6 0.2
σb s.d. pref. Inv. Gamma 0.1 1
ρp persist. prices Beta 0.6 0.2
ϕp ma. comp. prices Beta 0.5 0.2
σp s.d. prices Inv. Gamma 0.1 1
ρw persist. wages Beta 0.6 0.2
ϕw ma. comp. wages Beta 0.5 0.2
σw s.d. wages Inv. Gamma 0.1 1
ρmp persist. mon. Beta 0.4 0.2
σmp s.d. mon. Inv. Gamma 0.1 1
ρg persist. fisc. Beta 0.6 0.2
σg s.d. fisc. Inv. Gamma 0.5 1

Notes: The table reports the prior distribution of structural parameters in the estimation procedure for Justiniano, Primiceri, and
Tambalotti (2010a). The diagnosticity parameter θ is fixed at 0 under RE.
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Table 13: Posterior Distribution: Justiniano, Primiceri, and Tambalotti (2010a)

Diagnostic Rational
Parameter Description Mean [05, 95] Mean [05, 95]

θ diagnosticity 0.4336 [0.1894, 0.6745]
α cap. share 0.1702 [0.1603, 0.1800] 0.1700 [0.1602, 0.1800]
h habits 0.8788 [0.8443, 0.9142] 0.8270 [0.7655, 0.8902]
χ′′(1)
χ′(1) cap. util. costs 5.3160 [3.6696, 6.9322] 5.2978 [3.6521, 6.9145]

ψp Rotemberg prices 123.01 [91.513, 154.15] 116.43 [84.65, 147.570]
ψw Rotemberg wages 2863.31 [594.68, 5275.6] 3204.29 [720.56, 5835.5]
ν inv. Frisch elas. 4.3961 [2.9554, 5.7777] 4.2917 [2.8854, 5.6762]
S′′(1) inv. adj. costs 2.9689 [2.0722, 3.8461] 2.7528 [1.8821, 3.6124]
ρR m.p. rule 0.8064 [0.7681, 0.8445] 0.8193 [0.7822, 0.8567]
ϕπ m.p. rule 2.1751 [1.8764, 2.4631] 2.0782 [1.7792, 2.3655]
ϕx m.p. rule 0.0559 [0.0269, 0.0847] 0.0600 [0.0306, 0.0887]
ϕdx m.p. rule 0.2425 [0.1983, 0.2860] 0.2389 [0.1974, 0.2801]
ιp index. prices 0.2589 [0.1266, 0.3888] 0.1964 [0.0821, 0.3062]
ιw index. wages 0.1477 [0.0862, 0.2085] 0.1127 [0.0595, 0.1655]
100Ga s.s. growth rate 0.4675 [0.4237, 0.5108] 0.4695 [0.4256, 0.5139]
λp s.s. markup prices 0.2340 [0.1791, 0.2890] 0.2419 [0.1847, 0.2982]
λw s.s. markup wages 0.1347 [0.0525, 0.2127] 0.1360 [0.0543, 0.2130]
logL s.s. log hours 0.1827 [-0.600, 0.9579] 0.2032 [-0.571, 0.9877]
100(π − 1) s.s. infl. 0.7877 [0.6831, 0.8934] 0.7677 [0.6557, 0.8782]
100(β−1 − 1) disc. factor 0.1379 [0.0604, 0.2119] 0.1404 [0.0611, 0.2154]

Shocks
ρa persist. tech. 0.2145 [0.1240, 0.3047] 0.2518 [0.1522, 0.3508]
σa s.d. tech. 0.8828 [0.8032, 0.9591] 0.8908 [0.8121, 0.9695]
ρµ persist. inv. 0.7650 [0.6965, 0.8352] 0.7352 [0.6598, 0.8125]
σµ s.d. inv. 5.1618 [3.9758, 6.3096] 5.8481 [4.3020, 7.3632]
ρb persist. pref. 0.3595 [0.2202, 0.4971] 0.5161 [0.3394, 0.6957]
σb s.d. pref. 0.0650 [0.0379, 0.0911] 0.0566 [0.0317, 0.0818]
ρp persist. prices 0.9363 [0.9003, 0.9739] 0.9276 [0.8882, 0.9680]
ϕp ma. comp. prices 0.6515 [0.4918, 0.8136] 0.6790 [0.5503, 0.8127]
σp s.d. prices 0.0989 [0.0692, 0.1276] 0.1344 [0.1126, 0.1559]
ρw persist. wages 0.9808 [0.9652, 0.9975] 0.9773 [0.9586, 0.9972]
ϕw ma. comp. wages 0.9164 [0.8734, 0.9603] 0.9202 [0.8809, 0.9606]
σw s.d. wages 0.1679 [0.1355, 0.2006] 0.2115 [0.1847, 0.2387]
ρmp persist. mon. 0.1630 [0.0623, 0.2610] 0.1627 [0.0576, 0.2636]
σmp s.d. mon. 0.2336 [0.2109, 0.2560] 0.2262 [0.2050, 0.2472]
ρg persist. fisc. 0.9970 [0.9947, 0.9990] 0.9967 [0.9941, 0.9990]
σg s.d. fisc. 0.3477 [0.3187, 0.3756] 0.3476 [0.3191, 0.3764]

log Marg. Likelihood -1190.86 -1193.78

Notes: Priors are given in Table 12.
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F.4 Slope of Phillips Curve with Rotemberg Adjustment Costs

We compare the degree of price rigidity implied by our modeling of the Rotemberg

quadratic adjustment costs model to the one implied by the Calvo counterpart. We

find that using the Rotemberg costs does not change our inference about the slope of

the Phillips curves (either price or wage) in the RE model.

The approach is similar to the one in Gust, Herbst, López-Salido, and Smith (2017).

We calculate the slope of Phillips curves (price and wage) in our estimated models and

compare those slope coefficients to the ones implied by the parameters reported in

Smets and Wouters (2007b) (henceforth SW) and Justiniano, Primiceri, and Tam-

balotti (2010a) (henceforth JPT). We find that the slope coefficients are similar.

In a second exercise, we infer the Rotemberg adjustment cost parameter that is

consistent with the slope implied by the reported posterior means in SW and JPT.

We verify that the implied Rotemberg adjustment cost parameters are within our es-

timated credible intervals.

SW

Under Rotemberg adjustment costs, the slope coefficient (on marginal costs) in the

price Phillips curve equation with rational expectations is given by

κp =
ϵp − 1

(1 + ιpβγ1−σc)φp

where ϵp is elasticity of substitution across product varieties, ιp is weight on previ-

ous period inflation rate Πt−1, and hence governs indexation between previous period

inflation rate Πt−1 and steady state inflation Π̄, β is discount factor, and φp is the

Rotemberg adjustment cost parameter.

Our estimated posterior mean values for these parameters are: β = 0.9983, ιp =

0.2268, γ = 1.0042, σc = 1.3740, and φp = 383.13. ϵp is fixed at 10. These parameters

imply the slope coefficient of κRotembergp = 0.0192.

Under Calvo pricing, the slope coefficient (on marginal costs) in the price Phillips

curve equation with rational expectations is given by

κCalvop =
(1− ξpβγ

1−σc)(1− ξp)

ξp(1 + ιpβγ1−σc) ((Φ− 1)ϵp + 1)

where 1− ξp is the probability of resetting prices and Φ is one plus the share of fixed

costs in production. The reported posterior mean values for these parameters (SW)

are: ξp = 0.66, ιp = 0.24, β = 0.9984, γ = 1.0043, Φ = 1.60, σc = 1.38. ϵp is fixed at
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10. These parameters imply the slope coefficient of κCalvop = 0.0203. The conclusion is

that both Calvo and Rotemberg lead to similar slopes of this Phillips curve.

Imposing that the slope coefficient to be identical across the two modeling choices,

we can recover the implied Rotemberg adjustment cost parameter consistent with SW’s

parameters: Setting ϵp = 10, β = 0.9984, ιp = 0.24, γ = 1.0043, σc = 1.38, as in SW

implies a parameter of price adjustment cost of:

φp =
ϵp − 1

(1 + ιpβγ1−σc)κCalvop

≈ 357.76

As shown in Table 11, the posterior mean estimate of the Rotemberg pricing pa-

rameter ψp is 383.13 and the 90% credible interval covers values from 272.30 to 490.97

such that 357.76 is well within this credible band.

We now turn to the equivalent slope coefficient using Rotemberg wage adjustment

cost, which with rational expectations is given by

κw =
ϵwL

1+ν

φw(1 + βγ1−σc)

where ϵw is elasticity of substitution across labor varieties, ω is a scaling parameter in

disutility of labor, L is the steady state labor, ν is the inverse of Frisch elasticity of

labor supply, and φw is the Rotemberg wage adjustment cost parameter.

Our estimated posterior mean values for these parameters are: β = 0.9983, L =

1.3998, ν = 2.0293, γ = 1.0042, σc = 1.3740, φw = 2265.05. ϵw is fixed at 10. These

parameters imply the slope coefficient of κRotembergw = 0.0061.

Under Calvo pricing, the slope of the wage Phillips curve equation is given by

κCalvow =
(1− ξw)(1− βγ1−σcξw)

ξw(1 + βγ1−σc)(1 + (λw − 1)ϵw)

where 1− ξw is the probability of resetting wages. The reported posterior mean values

for these parameters (SW) are: ξw = 0.7, ν = 1.83, and β = 0.9984, γ = 1.0043, and

σc = 1.38. ϵw and λw are fixed at 10 and 1.5, respectively. These parameters imply the

slope coefficient of κCalvow = 0.0108. The conclusion is that both Calvo and Rotemberg

lead to similar slopes of this Phillips curve.

Imposing that the slope coefficient to be identical across the two modeling choices,

we can recover the implied Rotemberg adjustment cost parameter consistent with SW’s

parameters: Setting β = 0.9984, γ = 1.0043, σc = 1.38, ϵw = 10, L = 1.4460, ν = 1.83,
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and κw = 0.0108 implies a parameter of wage adjustment cost of:

φw =
ϵwL

1+ν

κw(1 + βγ1−σc)
≈ 1316.81

As shown in Table 11, the posterior mean estimate of the Rotemberg wage param-

eter ψw is 2265.05 and the 90% credible interval covers values from 1092.80 to 3374.99

such that 1316.72 is within this credible band.

JPT

Under Rotemberg adjustment costs, the slope coefficient (on marginal costs) in the

price Phillips curve equation with rational expectations is given by

κp =
ϵp − 1

(1 + ιpβ)φp

where ϵp is elasticity of substitution across product varieties, ιp is weight on previ-

ous period inflation rate Πt−1, and hence governs indexation between previous period

inflation rate Πt−1 and steady state inflation Π̄, β is discount factor, and φp is the

Rotemberg adjustment cost parameter.

Our estimated posterior mean values for these parameters are: β = 0.9986, ιp =

0.1964, ϵp = 5.1339, φp = 116.43. These parameters imply the slope coefficient of

κRotembergp = 0.0297.

Under Calvo pricing, the slope coefficient (on marginal costs) in the price Phillips

curve equation with rational expectations is given by

κCalvop =
(1− ξpβ)(1− ξp)

ξp(1 + ιpβ)

where 1− ξp is the probability of resetting prices. The reported posterior mean values

for these parameters (JPT) are: ξp = 0.84, ιp = 0.24, and β = 0.9987. These parame-

ters imply the slope coefficient of κCalvop = 0.0248. The conclusion is that both Calvo

and Rotemberg lead to similar slopes of this Phillips curve.

Imposing that the slope coefficient to be identical across the two modeling choices,

we can recover the implied Rotemberg adjustment cost parameter consistent with

JPT’s parameters: Setting ϵp = 5.35, β = 0.9987, ιp = 0.24 as in JPT implies a

parameter of price adjustment cost of:

φp =
ϵp − 1

(1 + βιp)κCalvop

≈ 141.49
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As shown in Table 13, the posterior mean estimate of the Rotemberg pricing pa-

rameter ψp is 116.43 and the 95% credible interval covers values from 84.65 to 147.57

such that 141.49 is within this credible band.

We now turn to the equivalent slope coefficient using Rotemberg wage adjustment

cost, which with rational expectations is given by

κw =
ϵwωL

1+ν

φw(1 + β)

where ϵw is elasticity of substitution across labor varieties, ω is a scaling parameter in

disutility of labor, L is the steady state labor, ν is the inverse of Frisch elasticity of

labor supply, and φw is the Rotemberg wage adjustment cost parameter.

Our estimated posterior mean values for these parameters are: β = 0.9986, ϵw =

8.3529, ω = 0.4062 , L = 1.2253, ν = 4.2917, φw = 3204.29. These parameters imply

the slope coefficient of κRotembergw = 0.0016.

Under Calvo pricing, the slope of the wage Phillips curve equation is given by

κCalvow =
(1− ξwβ)(1− ξw)

ξw(1 + β)(1 + ν(1 + 1
λw

))

where 1− ξw is the probability of resetting wages. The reported posterior mean values

for these parameters (JPT) are: ξw = 0.7, ν = 3.79, β = 0.9987, and λw = 0.15. These

parameters imply the slope coefficient of κCalvow = 0.0021. The conclusion is that both

Calvo and Rotemberg lead to similar slopes of this Phillips curve.

Imposing that the slope coefficient to be identical across the two modeling choices,

we can recover the implied Rotemberg adjustment cost parameter consistent with

JPT’s parameters: Setting β = 0.9987, ϵw = 7.67, ω = 0.1898 , L = 1.46, ν = 3.79,

and κw = 0.0021 implies a parameter of wage adjustment cost of:

φw =
ϵwωL

1+ν

κw(1 + β)
≈ 2125.08

As shown in Table 13, the posterior mean estimate of the Rotemberg wage param-

eter ψw is 3,204.29 and the 90% credible interval covers values from 720.56 to 5,835.47

such that 2,125.08 is well within this credible band.
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G Data Appendix

We obtain the (non-forecast) data from the following replication files: Blanchard et al.

(2013b). We briefly summarize the data construction as described by Blanchard et al.

(2013a). The series for Real GDP, Real Personal Consumption Expenditures, Real

Personal Durable Consumption Expenditures, Real Gross Private Domestic Invest-

ment, Wages and the GDP Implicit Price Deflator are from the Bureau of Economic

Analysis. Population and employment series are from the Bureau of Labor Statistics

online database (series IDs LNS10000000Q and LNS12000000Q respectively). The

Federal Funds Rate series is from the Federal Reserve Board online database (series

ID H15/H15/RIFSPFF N.M).

Regarding the Survey of Professional Forecasters (2022) forecast data, we use the

median forecast (across individual forecasters) as the consensus forecast. All forecasts

we use are one quarter ahead forecasts. For the output (series ID RGDP), consumption

(series ID RCONSUM), and investment (series ID RNRESIN) growth rate, we subtract

these growth rate forecasts by actual population growth rate to obtain per capita

forecasts. Inflation and the nominal interest rate are obtained from the GDP Price

Deflator and the Treasury bill rate (series IDs PGDP and TBILL). Forecast data

are available from 1968:IV to 2004:IV for the output growth rate and inflation, and

from 1981:III to 2004:IV for the consumption and investment growth rate, and for the

nominal interest rate.

For robustness estimations of comparison with alternate models, we obtain the data

from the following replication files: Smets and Wouters (2007a) and Justiniano et al.

(2010b).
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